Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Effects of Temperature and Liquid Nitrogen (LN2) on Coal’s Mechanical and Acoustic Emission (AE) Properties

    Teng Teng1,2, Yuhe Cai3, Linchao Wang3,*, Yanzhao Zhu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1181-1202, 2024, DOI:10.32604/fdmp.2023.044532

    Abstract Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas, and its application in coalbed methane extraction is currently a research hotspot. This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment. Through examination of the load-displacement curves of the considered coal samples, their mechanical properties are also revealed for different initial temperatures and cycling frequencies. The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature… More >

  • Open Access

    ARTICLE

    Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions

    Yan Liu1, Tianli Sun2, Bencheng Wang1,*, Yan Feng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1165-1180, 2024, DOI:10.32604/fdmp.2023.041852

    Abstract A numerical model of hydraulic fracture propagation is introduced for a representative reservoir (Yuanba continental tight sandstone gas reservoir in Northeast Sichuan). Different parameters are considered, i.e., the interlayer stress difference, the fracturing discharge rate and the fracturing fluid viscosity. The results show that these factors affect the gas and water production by influencing the fracture size. The interlayer stress difference can effectively control the fracture height. The greater the stress difference, the smaller the dimensionless reconstruction volume of the reservoir, while the flowback rate and gas production are lower. A large displacement fracturing construction More >

  • Open Access

    ARTICLE

    Shale Fracturability Graphic Template Based on Mixed Analytic Hierar-chy Process and Mutation Theory

    Sichen Li1,2, Dehua Liu1,2,*, Liang Cheng1,2, Pan Ma1,2

    Energy Engineering, Vol.121, No.7, pp. 1921-1943, 2024, DOI:10.32604/ee.2024.049906

    Abstract Due to the depletion of conventional energy reserves, there has been a global shift towards non-conventional energy sources. Shale oil and gas have emerged as key alternatives. These resources have dense and heterogeneous reservoirs, which require hydraulic fracturing to extract. This process depends on identifying optimal fracturing layers, also known as ‘sweet spots’. However, there is currently no uniform standard for locating these sweet spots. This paper presents a new model for evaluating fracturability that aims to address the current gap in the field. The model utilizes a hierarchical analysis approach and a mutation model, More > Graphic Abstract

    Shale Fracturability Graphic Template Based on Mixed Analytic Hierar-chy Process and Mutation Theory

  • Open Access

    ARTICLE

    Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells

    Jianchao Shi1,2, Yanan Zhang3, Wantao Liu1,2, Yuliang Su3,*, Jian Shi1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1147-1163, 2024, DOI:10.32604/fdmp.2023.044500

    Abstract Class III tight oil reservoirs have low porosity and permeability, which are often responsible for low production rates and limited recovery. Extensive repeated fracturing is a well-known technique to fix some of these issues. With such methods, existing fractures are refractured, and/or new fractures are created to facilitate communication with natural fractures. This study explored how different refracturing methods affect horizontal well fracture networks, with a special focus on morphology and related fluid flow changes. In particular, the study relied on the unconventional fracture model (UFM). The evolution of fracture morphology and flow field after More >

  • Open Access

    ARTICLE

    A Novel Fracturing Fluid with High-Temperature Resistance for Ultra-Deep Reservoirs

    Lian Liu1,2, Liang Li1,2, Kebo Jiao1,2,*, Junwei Fang1,2, Yun Luo1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 975-987, 2024, DOI:10.32604/fdmp.2023.030109

    Abstract Ultra-deep reservoirs play an important role at present in fossil energy exploitation. Due to the related high temperature, high pressure, and high formation fracture pressure, however, methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used. In response to the above problem, a fracturing fluid with a density of 1.2~1.4 g/cm was developed by using Potassium formatted, hydroxypropyl guanidine gum and zirconium crosslinking agents. The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min More >

  • Open Access

    ARTICLE

    A Data-Oriented Method to Optimize Hydraulic Fracturing Parameters of Tight Sandstone Reservoirs

    Zhengrong Chen*, Mao Jiang, Chuanzhi Ai, Jianshu Wu, Xin Xie

    Energy Engineering, Vol.121, No.6, pp. 1657-1669, 2024, DOI:10.32604/ee.2024.030222

    Abstract Based on the actual data collected from the tight sandstone development zone, correlation analysis using the Spearman method was conducted to determine the main factors influencing the gas production rate of tight sandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracture propagation and production was completed. Based on data analysis, the hydraulic fracture parameters were optimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influence of geological and engineering factors in the X1 and X2 development zones in the study area differs significantly. Therefore, it is… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous–Discontinuous Element Method

    Rui Zhang1, Lixiang Wang2,*, Jing Li1,4, Chun Feng2, Yiming Zhang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2103-2129, 2024, DOI:10.32604/cmes.2024.049885

    Abstract Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations. Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production. In this study, we employ a hybrid finite-discrete element method, known as the continuous–discontinuous element method (CDEM), to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters. The model incorporates the four most prevalent perforation geometries, as delineated in an engineering technical report. Real-world perforations deviate from the ideal cylindrical shape, More >

  • Open Access

    ARTICLE

    Lineament Mapping in Batie Area (West-Cameroon) Using Landsat-9 Operational Land Imager/Thermal Infrared Sensor and Shuttle Radar Topography Mission Data: Hydrogeological Implication

    Jean Aime Mono1,2,*, Apollinaire Bouba3, Jean Daniel Ngoh4, Olivier Ulrich Igor Owono Amougou5, Françoise Martine Enyegue A Nyam6, Théophile Ndougsa Mbarga7

    Revue Internationale de Géomatique, Vol.33, pp. 135-154, 2024, DOI:10.32604/rig.2024.049966

    Abstract This study focuses on the mapping of lineaments using remote sensing techniques and Geographic Information Systems. The aim is to carry out a statistical analysis of the lineaments in order to better understand the organization of fracturing in the Batie district, and to identify areas of high fracturing density and their relationship with the hydrographic network. The methodology implemented to achieve these objectives is based on the processing and analysis of Landsat 9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery and Shuttle Radar Topography Mission (SRTM) data covering the study area. After essential pre-processing… More >

  • Open Access

    ARTICLE

    Factors Influencing Fracture Propagation in Collaborative Fracturing of Multiple Horizontal Wells

    Diguang Gong1, Junbin Chen1, Cheng Cheng2, Yuanyuan Kou2,*

    Energy Engineering, Vol.121, No.2, pp. 425-437, 2024, DOI:10.32604/ee.2023.030196

    Abstract Horizontal well-stimulation is the key to unconventional resource exploration and development. The development mode of the well plant helps increase the stimulated reservoir volume. Nevertheless, fracture interference between wells reduces the fracturing effect. Here, a 2D hydro-mechanical coupling model describing hydraulic fracture (HF) propagation is established with the extended finite element method, and the effects of several factors on HF propagation during multiple wells fracturing are analyzed. The results show that with an increase in elastic modulus, horizontal principal stress difference and injection fluid displacement, the total fracture area and the reservoir stimulation efficiency are More >

  • Open Access

    PROCEEDINGS

    Investigation of Pore-Scale THMC Acid Fracturing Process Considering Heat Conduction Anisotropy

    Kaituo Jiao1, Dongxu Han2,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-5, 2023, DOI:10.32604/icces.2023.09168

    Abstract Acid fracturing is critical to improving the connectivity inside underground reservoirs, which involves a complex thermal-hydro-mechanical-chemical (THMC) coupling process, especially deep underground. Heat conduction anisotropy is one of the intrinsic properties of rock. It determines the heat response distribution inside the rock and alters the temperature evolution on the reactive surface of fractures and pores. In another way, the rock dissolution rate is closely related to the reactive surface temperature. Predictably, heat conduction anisotropy leads to different rock dissolution morphologies from that of the heat conduction isotropy situation, then the cracks distribution and permeability of… More >

Displaying 1-10 on page 1 of 33. Per Page