Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    Experimental Study of Sand Transport Assisted by Self-Suspended Proppant in Complex Fractures

    Yang Zhang1, Xiaoping Yang1, Yalan Zhang1, Mingzhe Han1, Jiayi Sun2, Zhengsheng Xia3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075388 - 06 February 2026

    Abstract Self-suspended proppants, which enable clear-water fracturing, represent a promising new class of materials for reservoir stimulation. Given the economic limitations associated with their exclusive use, this study investigates proppant transport behavior in hybrid systems combining self-suspended proppants with conventional 40/70 mesh quartz sand at various mixing ratios. A dedicated experimental apparatus was developed to replicate field-relevant complex fracture networks, consisting of a main fracture and two branching fractures with different deflection angles. Using this system, sand bank formation and proppant distribution were examined for both conventional quartz sand fracturing and fracturing augmented with self-suspended proppants.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Cross-Layer Propagation Mechanisms for Hydraulic Fractures in Deep Coal-Rock Formations

    Zhirong Jin1,*, Xiaorui Hou1, Yanrong Ge1, Tiankui Guo2, Ming Chen2, Shuyi Li2, Tianyu Niu2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070750 - 27 January 2026

    Abstract Hydraulic fracturing serves as a critical technology for reservoir stimulation in deep coalbed methane (CBM) development, where the mechanical properties of gangue layers exert a significant control on fracture propagation behavior. To address the unclear mechanisms governing fracture penetration across coal-gangue interfaces, this study employs the Continuum-Discontinuum Element Method (CDEM) to simulate and analyze the vertical propagation of hydraulic fractures initiating within coal seams, based on geomechanical parameters derived from the deep Benxi Formation coal seams in the southeastern Ordos Basin. The investigation systematically examines the influence of geological and operational parameters on cross-interfacial fracture… More >

  • Open Access

    ARTICLE

    Linxing-Shenfu Gangue Interaction Coal Seam Hydraulic Fracture Cross-Layer Expansion Mechanism

    Li Wang1, Xuesong Xing1, Yanan Hou1, Heng Wen1, Ying Zhu1, Jingyu Zi1, Qingwei Zeng2,3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.068653 - 27 January 2026

    Abstract The deep coal reservoir in Linxing-Shenfu block of Ordos Basin is an important part of China’s coalbed methane resources. In the process of reservoir reconstruction, the artificial fracture morphology of coal seam with gangue interaction is significantly different, which affects the efficient development of coalbed methane resources in this area. In this paper, the surface outcrop of Linxing-Shenfu block is selected, and three kinds of interaction modes between gangue and coal seam are set up, including single-component coal rock sample, coal rock sample with different thicknesses of gangue layer and coal rock sample with different… More >

  • Open Access

    ARTICLE

    A New Approach for Evaluating and Optimizing Hydraulic Fracturing in Coalbed Methane Reservoirs

    Xia Yan1, Wei Wang1, Kai Shen2,*, Yanqing Feng1, Junyi Sun1, Xiaogang Li1, Wentao Zhu1, Binbin Shi1, Guanglong Sheng2,3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070360 - 27 December 2025

    Abstract In the development of coalbed methane (CBM) reservoirs using multistage fractured horizontal wells, there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages, leading to suboptimal reservoir performance. Currently, there is no well-established method for accurately evaluating the effectiveness of such stimulation. This study introduces, for the first time, the concept of the Fracture Network Bridging Coefficient (FNBC) as a novel metric to assess stimulation performance. By quantitatively coupling the proportions of unstimulated and overstimulated volumes, the FNBC effectively characterizes the connectivity and efficiency of the fracture network. A background… More >

  • Open Access

    ARTICLE

    Large-Volume Hydraulic Fracturing in Tight Gas Reservoirs: High-Efficiency Stimulation and Geological Adaptability Assessment

    Bo Wang1, Fuyang Wu2, Zifeng Chen2, Libin Dai1, Yifan Dong1, Xiaotao Gao3, Zongfa Li2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2701-2719, 2025, DOI:10.32604/fdmp.2025.067298 - 01 December 2025

    Abstract Tight gas reservoirs are often characterized by pronounced heterogeneity and poor continuity, resulting in wide variability in production enhancement and net present value (NPV) for different geological parameter combinations (see e.g., the Ordos Basin). The conditions governing geological adaptability remain insufficiently defined. To address these challenges, this study integrates large-volume hydraulic fracturing, numerical production simulation, and economic evaluation to elucidate the mechanisms by which large-scale fracturing enhances fracture parameters in tight gas formations. The analysis reveals that, for identical proppant and fluid volumes, increasing the fracturing injection rate leads to longer and taller fractures. Over… More >

  • Open Access

    ARTICLE

    A Novel Low-Damage Viscoelastic-Surfactant Foam Fracturing Fluid for Tight Reservoirs: Development and Performance Assessment

    Yu Li1,2,3,*, Jie Bian3, Liang Zhang2,3, Xuesong Feng3, Jiachen Hu3, Ji Yu3, Chao Zhou3, Tian Lan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2539-2556, 2025, DOI:10.32604/fdmp.2025.067685 - 30 October 2025

    Abstract As oil and gas development increasingly targets unconventional reservoirs, the limitations of conventional hydraulic fracturing, namely high water consumption and significant reservoir damage, have become more pronounced. This has driven growing interest in the development of clean fracturing fluids that minimize both water usage and formation impairment. In this study, a low-liquid-content viscoelastic surfactant (VES) foam fracturing fluid system was formulated and evaluated through laboratory experiments. The optimized formulation comprises 0.2% foaming agent CTAB (cetyltrimethylammonium bromide) and 2% foam stabilizer EAPB (erucamidopropyl betaine). Laboratory tests demonstrated that the VES foam system achieved a composite foam… More >

  • Open Access

    ARTICLE

    Unsteady Flow Dynamics and Phase Transition Behavior of CO2 in Fracturing Wellbores

    Zihao Yang1,*, Jiarui Cheng1, Zefeng Li2, Yirong Yang1, Linghong Tang1, Wenlan Wei1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2149-2176, 2025, DOI:10.32604/fdmp.2025.067739 - 30 September 2025

    Abstract This study presents a two-dimensional, transient model to simulate the flow and thermal behavior of CO2 within a fracturing wellbore. The model accounts for high-velocity flow within the tubing and radial heat exchange between the wellbore and surrounding formation. It captures the temporal evolution of temperature, pressure, flow velocity, and fluid density, enabling detailed analysis of phase transitions along different tubing sections. The influence of key operational and geological parameters, including wellhead pressure, injection velocity, inlet temperature, and formation temperature gradient, on the wellbore’s thermal and pressure fields is systematically investigated. Results indicate that due to… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Fracture Propagation Induced by Supercritical CO2 in Deep Shale Reservoirs

    Taizhi Shen1, Gang Chen1, Jiang Bai1, Dan Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1917-1934, 2025, DOI:10.32604/fdmp.2025.067114 - 12 September 2025

    Abstract Deep shale reservoirs are often associated with extreme geological conditions, including high temperatures, substantial horizontal stress differences, elevated closure stresses, and high breakdown pressures. These factors pose significant challenges to conventional hydraulic fracturing with water-based fluids, which may induce formation damage and fail to generate complex fracture networks. Supercritical carbon dioxide (SC-CO2), with its low viscosity, high diffusivity, low surface tension, and minimal water sensitivity, has attracted growing attention as an alternative fracturing fluid for deep shale stimulation. This study presents a series of true triaxial large-scale physical experiments using shale samples from the Longmaxi Formation More >

  • Open Access

    ARTICLE

    Numerical Simulation of Hydraulic Fracture Propagation in Deep Elasto-Plastic Reservoirs

    Xin Wan1, Shuyi Li2,3, Tiankui Guo2,3,*, Ming Chen2,3, Xing Yang2,3, Guchang Zhang2,3, Zi’ang Wang2,3

    Energy Engineering, Vol.122, No.8, pp. 3013-3039, 2025, DOI:10.32604/ee.2025.066033 - 24 July 2025

    Abstract Hydraulic fracturing is a key technology for the efficient development of deep oil and gas reservoirs. However, fracture propagation behavior is influenced by rock elastoplasticity and thermal stress, making it difficult for traditional linear elastic models to accurately describe its dynamic response. To address this, this study employs the Continuum-Discontinuum Element Method (CDEM), incorporating an elastoplastic constitutive model, thermo-hydro-mechanical (THM) coupling effects, and cohesive zone characteristics at the fracture tip to establish a numerical model for hydraulic fracture propagation in deep elastoplastic reservoirs. A systematic investigation was conducted into the effects of fluid viscosity, reservoir… More > Graphic Abstract

    Numerical Simulation of Hydraulic Fracture Propagation in Deep Elasto-Plastic Reservoirs

Displaying 1-10 on page 1 of 62. Per Page