Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (312)
  • Open Access

    ARTICLE

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

    Huiyan Zhao1, Xuezhong Chen1, Zhijian Hu2,*, Man Chen1, Bo Xiong3, Jianying Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1313-1330, 2024, DOI:10.32604/fdmp.2024.048840

    Abstract Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis, a model is developed to predict the related well production rate. This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales, as well as the flow characteristics in different types of thin layers (tight sandstone gas, shale gas, and coalbed gas). Moreover, a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir. A… More > Graphic Abstract

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

  • Open Access

    ARTICLE

    Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions

    Yan Liu1, Tianli Sun2, Bencheng Wang1,*, Yan Feng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1165-1180, 2024, DOI:10.32604/fdmp.2023.041852

    Abstract A numerical model of hydraulic fracture propagation is introduced for a representative reservoir (Yuanba continental tight sandstone gas reservoir in Northeast Sichuan). Different parameters are considered, i.e., the interlayer stress difference, the fracturing discharge rate and the fracturing fluid viscosity. The results show that these factors affect the gas and water production by influencing the fracture size. The interlayer stress difference can effectively control the fracture height. The greater the stress difference, the smaller the dimensionless reconstruction volume of the reservoir, while the flowback rate and gas production are lower. A large displacement fracturing construction More >

  • Open Access

    ARTICLE

    Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology

    Safwan Al-sayed, Xi Wang, Yijiang Peng*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4169-4195, 2024, DOI:10.32604/cmc.2024.048916

    Abstract The mechanical properties and failure mechanism of lightweight aggregate concrete (LWAC) is a hot topic in the engineering field, and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field. In this study, the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete. Through the information extraction and processing of the section image of actual light aggregate concrete specimens, the mesostructural model of light aggregate concrete with real aggregate characteristics is established. The numerical simulation of uniaxial tensile test, uniaxial compression… More >

  • Open Access

    ARTICLE

    Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells

    Jianchao Shi1,2, Yanan Zhang3, Wantao Liu1,2, Yuliang Su3,*, Jian Shi1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1147-1163, 2024, DOI:10.32604/fdmp.2023.044500

    Abstract Class III tight oil reservoirs have low porosity and permeability, which are often responsible for low production rates and limited recovery. Extensive repeated fracturing is a well-known technique to fix some of these issues. With such methods, existing fractures are refractured, and/or new fractures are created to facilitate communication with natural fractures. This study explored how different refracturing methods affect horizontal well fracture networks, with a special focus on morphology and related fluid flow changes. In particular, the study relied on the unconventional fracture model (UFM). The evolution of fracture morphology and flow field after More >

  • Open Access

    ARTICLE

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

    Fang Li1,*, Juan Wu1, Haiyong Yi2, Lihong Wu2, Lingyun Du1, Yuan Zeng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1015-1030, 2024, DOI:10.32604/fdmp.2023.043256

    Abstract Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors, such as strong reservoir heterogeneity and seepage mechanisms. In this study, the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments. On the basis of these experiments, a numerical simulation model (based on the special seepage mechanism) and an inverse dynamic reserve algorithm (with different equivalent drainage areas) were developed. The well spacing ranges of Classes I, II, and III wells in the Q gas More > Graphic Abstract

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

  • Open Access

    ARTICLE

    Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous–Discontinuous Element Method

    Rui Zhang1, Lixiang Wang2,*, Jing Li1,4, Chun Feng2, Yiming Zhang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2103-2129, 2024, DOI:10.32604/cmes.2024.049885

    Abstract Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations. Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production. In this study, we employ a hybrid finite-discrete element method, known as the continuous–discontinuous element method (CDEM), to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters. The model incorporates the four most prevalent perforation geometries, as delineated in an engineering technical report. Real-world perforations deviate from the ideal cylindrical shape, More >

  • Open Access

    ARTICLE

    Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture

    Mingjian Li, Ping Yang*, Pengyang Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2019-2034, 2024, DOI:10.32604/cmes.2024.048334

    Abstract The experimental results in previous studies have indicated that during the ductile fracture of pure metals, vacancies aggregate and form voids at grain boundaries. However, the physical mechanism underlying this phenomenon remains not fully understood. This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects. This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy. Subsequently, a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries. This model is first verified and More >

  • Open Access

    ARTICLE

    Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs

    Xingliang Deng1, Peng Cao2,*, Yintao Zhang1, Yuhui Zhou3, Xiao Luo1, Liang Wang3

    Energy Engineering, Vol.121, No.5, pp. 1195-1207, 2024, DOI:10.32604/ee.2023.045870

    Abstract The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich. The connectivity of carbonate reservoirs is complex, and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs. Thus, effective prediction of fractured-vuggy reservoirs is difficult. In view of this, this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir. To identify the complex connectivity among pores, fractures, and vugs, a simplified one-dimensional connectivity model is established by using the meshless More >

  • Open Access

    ARTICLE

    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and… More >

  • Open Access

    ARTICLE

    Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

    Fayez Alfayez*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1539-1560, 2024, DOI:10.32604/cmc.2024.046443

    Abstract This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spine fractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picture segmentation, feature reduction, and image classification. Two important elements are investigated to reduce the classification time: Using feature reduction software and leveraging the capabilities of sophisticated digital processing hardware. The researchers use different algorithms for picture enhancement, including the Wiener and Kalman filters, and they look into two background correction techniques. The article presents a technique for extracting textural features and evaluates three… More >

Displaying 1-10 on page 1 of 312. Per Page