Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    On Time Fractional Partial Differential Equations and Their Solution by Certain Formable Transform Decomposition Method

    Rania Saadeh1, Ahmad Qazza1, Aliaa Burqan1, Shrideh Al-Omari2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 3121-3139, 2023, DOI:10.32604/cmes.2023.026313 - 09 March 2023

    Abstract This paper aims to investigate a new efficient method for solving time fractional partial differential equations. In this orientation, a reliable formable transform decomposition method has been designed and developed, which is a novel combination of the formable integral transform and the decomposition method. Basically, certain accurate solutions for time-fractional partial differential equations have been presented. The method under concern demands more simple calculations and fewer efforts compared to the existing methods. Besides, the posed formable transform decomposition method has been utilized to yield a series solution for given fractional partial differential equations. Moreover, several More >

  • Open Access

    ARTICLE

    The Fractional Investigation of Some Nonlinear Partial Differential Equations by Using an Efficient Procedure

    Fairouz Tchier1, Hassan Khan2,3,*, Shahbaz Khan2, Poom Kumam4,5, Ioannis Dassios6

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2137-2153, 2023, DOI:10.32604/cmes.2023.022855 - 23 November 2022

    Abstract The nonlinearity in many problems occurs because of the complexity of the given physical phenomena. The present paper investigates the non-linear fractional partial differential equations’ solutions using the Caputo operator with Laplace residual power series method. It is found that the present technique has a direct and simple implementation to solve the targeted problems. The comparison of the obtained solutions has been done with actual solutions to the problems. The fractional-order solutions are presented and considered to be the focal point of this research article. The results of the proposed technique are highly accurate and More >

  • Open Access

    ARTICLE

    The Fractional Investigation of Fornberg-Whitham Equation Using an Efficient Technique

    Hassan Khan1,2, Poom Kumam3,4,*, Asif Nawaz1, Qasim Khan1, Shahbaz Khan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 259-273, 2023, DOI:10.32604/cmes.2022.021332 - 29 September 2022

    Abstract In the last few decades, it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences. For this reason, fractional partial differential equations (FPDEs) are of more importance to model the different physical processes in nature more accurately. Therefore, the analytical or numerical solutions to these problems are taken into serious consideration and several techniques or algorithms have been developed for their solution. In the current work, the idea of fractional calculus has been used, and fractional Fornberg Whitham equation (FFWE) is represented in its fractional More >

  • Open Access

    ARTICLE

    Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations

    An Chen1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 917-939, 2020, DOI:10.32604/cmes.2020.09224 - 28 May 2020

    Abstract In this paper, two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered. These two models can be regarded as the generalization of the classical wave equation in two space dimensions. Combining with the Crank-Nicolson method in temporal direction, efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed, respectively. The corresponding stability and convergence analysis of the numerical methods are discussed. Numerical results are provided to verify the theoretical analysis. More >

  • Open Access

    ARTICLE

    Numerical solution of fractional partial differential equations using Haar wavelets

    Lifeng Wang1, Zhijun Meng1, Yunpeng Ma1, Zeyan Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 269-287, 2013, DOI:10.3970/cmes.2013.091.269

    Abstract In this paper, we present a computational method for solving a class of fractional partial differential equations which is based on Haar wavelets operational matrix of fractional order integration. We derive the Haar wavelets operational matrix of fractional order integration. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Finally, some examples are included to show the implementation and accuracy of the approach. More >

  • Open Access

    ARTICLE

    Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

    Mingxu Yi1, Yiming Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 229-244, 2012, DOI:10.3970/cmes.2012.088.229

    Abstract In this paper, Haar wavelet operational matrix method is proposed to solve a class of fractional partial differential equations. We derive the Haar wavelet operational matrix of fractional order integration. Meanwhile, the Haar wavelet operational matrix of fractional order differentiation is obtained. The operational matrix of fractional order differentiation is utilized to reduce the initial equation to a Sylvester equation. Some numerical examples are included to demonstrate the validity and applicability of the approach. More >

Displaying 1-10 on page 1 of 6. Per Page