Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Thermogram Adaptive Efficient Model for Breast Cancer Detection Using Fractional Derivative Mask and Hybrid Feature Set in the IoT Environment

    Ritam Sharma1, Janki Ballabh Sharma1, Ranjan Maheshwari1, Praveen Agarwal2,3,4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 923-947, 2022, DOI:10.32604/cmes.2022.016065 - 13 December 2021

    Abstract In this paper, a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced. This paper also introduces the application of a histogram of linear bipolar pattern features (HLBP) for breast thermogram classification. Initially, breast tissues are separated by masking operation and filtered by Grmwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise. A novel hybrid feature set using HLBP and other statistical feature sets is derived and reduced by principal component analysis. Radial basis function kernel-based support vector machine is employed for detecting the abnormality… More >

Displaying 1-10 on page 1 of 1. Per Page