Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    REVIEW

    An Overview of Image Tamper Detection

    Xingyu Chen*

    Journal of Information Hiding and Privacy Protection, Vol.4, No.2, pp. 103-113, 2022, DOI:10.32604/jihpp.2022.039766

    Abstract With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software, the threshold of digital image editing becomes lower and lower. This makes it easy to trick the human visual system with professionally altered images. These tampered images have brought serious threats to many fields, including personal privacy, news communication, judicial evidence collection, information security and so on. Therefore, the security and reliability of digital information has been increasingly concerned by the international community. In this paper, digital image tamper detection methods are classified according to the clues that they rely on, detection methods… More >

  • Open Access

    ARTICLE

    Detecting Double JPEG Compressed Color Images via an Improved Approach

    Xiaojie Zhao1, Xiankui Meng1, Ruyong Ren2, Shaozhang Niu2,*, Zhenguang Gao3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1765-1781, 2023, DOI:10.32604/cmc.2023.029552

    Abstract Detecting double Joint Photographic Experts Group (JPEG) compression for color images is vital in the field of image forensics. In previous researches, there have been various approaches to detecting double JPEG compression with different quantization matrices. However, the detection of double JPEG color images with the same quantization matrix is still a challenging task. An effective detection approach to extract features is proposed in this paper by combining traditional analysis with Convolutional Neural Networks (CNN). On the one hand, the number of nonzero pixels and the sum of pixel values of color space conversion error are provided with 12-dimensional features… More >

  • Open Access

    ARTICLE

    Computer Forensics Framework for Efficient and Lawful Privacy-Preserved Investigation

    Waleed Halboob1,*, Jalal Almuhtadi1,2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2071-2092, 2023, DOI:10.32604/csse.2023.024110

    Abstract Privacy preservation (PP) in Digital forensics (DF) is a conflicted and non-trivial issue. Existing solutions use the searchable encryption concept and, as a result, are not efficient and support only a keyword search. Moreover, the collected forensic data cannot be analyzed using existing well-known digital tools. This research paper first investigates the lawful requirements for PP in DF based on the organization for economic co-operation and development OECB) privacy guidelines. To have an efficient investigation process and meet the increased volume of data, the presented framework is designed based on the selective imaging concept and advanced encryption standard (AES). The… More >

  • Open Access

    ARTICLE

    Enhancing CNN for Forensics Age Estimation Using CGAN and Pseudo-Labelling

    Sultan Alkaabi1,*, Salman Yussof1, Sameera Al-Mulla2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2499-2516, 2023, DOI:10.32604/cmc.2023.029914

    Abstract Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases. Traditionally, this process is done manually by human expert. However, the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness. To improve the recognition speed and consistency, researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network (CNN). CNN requires many training images to obtain high percentage of recognition accuracy. Unfortunately, it is very difficult to get large number of samples… More >

  • Open Access

    REVIEW

    A Thorough Investigation on Image Forgery Detection

    Anjani Kumar Rai*, Subodh Srivastava

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1489-1528, 2023, DOI:10.32604/cmes.2022.020920

    Abstract Image forging is the alteration of a digital image to conceal some of the necessary or helpful information. It cannot be easy to distinguish the modified region from the original image in some circumstances. The demand for authenticity and the integrity of the image drive the detection of a fabricated image. There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files, including re-sampling or copy-moving. This work presents a high-level view of the forensics of digital images and their possible detection approaches. This work presents a thorough analysis of digital image forgery detection techniques with their… More >

  • Open Access

    ARTICLE

    Deep Learning Based Image Forgery Detection Methods

    Liang Xiu-jian1,2,*, Sun He2

    Journal of Cyber Security, Vol.4, No.2, pp. 119-133, 2022, DOI:10.32604/jcs.2022.032915

    Abstract Increasingly advanced image processing technology has made digital image editing easier and easier. With image processing software at one’s fingertips, one can easily alter the content of an image, and the altered image is so realistic that it is illegible to the naked eye. These tampered images have posed a serious threat to personal privacy, social order, and national security. Therefore, detecting and locating tampered areas in images has important practical significance, and has become an important research topic in the field of multimedia information security. In recent years, deep learning technology has been widely used in image tampering localization,… More >

  • Open Access

    ARTICLE

    A Survey of Anti-forensic for Face Image Forgery

    Haitao Zhang*

    Journal of Information Hiding and Privacy Protection, Vol.4, No.1, pp. 41-51, 2022, DOI:10.32604/jihpp.2022.031707

    Abstract Deep learning related technologies, especially generative adversarial network, are widely used in the fields of face image tampering and forgery. Forensics researchers have proposed a variety of passive forensic and related anti-forensic methods for image tampering and forgery, especially face images, but there is still a lack of overview of anti-forensic methods at this stage. Therefore, this paper will systematically discuss the anti-forensic methods for face image tampering and forgery. Firstly, this paper expounds the relevant background, including the relevant tampering and forgery methods and forensic schemes of face images. The former mainly includes four aspects: conventional processing, fake face… More >

  • Open Access

    ARTICLE

    Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique

    C. D. Prem Kumar1,*, S. Saravana Sundaram2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 881-899, 2023, DOI:10.32604/iasc.2023.025766

    Abstract The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content. An effective technique for tampering the identification is the copy-move forgery. Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification. Contrastingly, deep learning (DL) models have demonstrated significant performance over the other statistical techniques. With this motivation, this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection (ODTL-CMFD) technique. The presented ODTL-CMFD technique aims to derive a DL model for the classification of… More >

  • Open Access

    ARTICLE

    Text-Independent Algorithm for Source Printer Identification Based on Ensemble Learning

    Naglaa F. El Abady1,*, Mohamed Taha1, Hala H. Zayed1,2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1417-1436, 2022, DOI:10.32604/cmc.2022.028044

    Abstract Because of the widespread availability of low-cost printers and scanners, document forgery has become extremely popular. Watermarks or signatures are used to protect important papers such as certificates, passports, and identification cards. Identifying the origins of printed documents is helpful for criminal investigations and also for authenticating digital versions of a document in today’s world. Source printer identification (SPI) has become increasingly popular for identifying frauds in printed documents. This paper provides a proposed algorithm for identifying the source printer and categorizing the questioned document into one of the printer classes. A dataset of 1200 papers from 20 distinct (13)… More >

  • Open Access

    Vulnerability Analysis of MEGA Encryption Mechanism

    Qingbing Ji1,2,*, Zhihong Rao1,2, Lvlin Ni2, Wei Zhao2, Jing Fu3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 817-829, 2022, DOI:10.32604/cmc.2022.026949

    Abstract MEGA is an end-to-end encrypted cloud storage platform controlled by users. Moreover, the communication between MEGA client and server is carried out under the protection of Transport Layer Security (TLS) encryption, it is difficult to intercept the key data packets in the process of MEGA registration, login, file data upload, and download. These characteristics of MEGA have brought great difficulties to its forensics. This paper presents a method to attack MEGA to provide an effective method for MEGA’s forensics. By debugging the open-source code of MEGA and analyzing the security white paper published, this paper first clarifies the encryption mechanism… More >

Displaying 1-10 on page 1 of 23. Per Page  

Share Link