Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In order to improve the accuracy… More >

  • Open Access

    ARTICLE

    TSCND: Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting

    Haoran Huang, Weiting Chen*, Zheming Fan

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3665-3681, 2024, DOI:10.32604/cmc.2024.048008

    Abstract Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing memory cells and gating mechanisms… More >

  • Open Access

    ARTICLE

    Investigating Periodic Dependencies to Improve Short-Term Load Forecasting

    Jialin Yu1,*, Xiaodi Zhang2, Qi Zhong1, Jian Feng1

    Energy Engineering, Vol.121, No.3, pp. 789-806, 2024, DOI:10.32604/ee.2023.043299

    Abstract With a further increase in energy flexibility for customers, short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids. The electrical load series exhibit periodic patterns and share high associations with metrological data. However, current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series, which hinders the further improvement of short-term load forecasting accuracy. Therefore, this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction. In addition, a novel multi-factor attention mechanism… More >

  • Open Access

    ARTICLE

    A Measurement Study of the Ethereum Underlying P2P Network

    Mohammad Z. Masoud1, Yousef Jaradat1, Ahmad Manasrah2, Mohammad Alia3, Khaled Suwais4,*, Sally Almanasra4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 515-532, 2024, DOI:10.32604/cmc.2023.044504

    Abstract This work carried out a measurement study of the Ethereum Peer-to-Peer (P2P) network to gain a better understanding of the underlying nodes. Ethereum was applied because it pioneered distributed applications, smart contracts, and Web3. Moreover, its application layer language “Solidity” is widely used in smart contracts across different public and private blockchains. To this end, we wrote a new Ethereum client based on Geth to collect Ethereum node information. Moreover, various web scrapers have been written to collect nodes’ historical data from the Internet Archive and the Wayback Machine project. The collected data has been compared with two other services… More >

  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective techniques resulting in poor generalization.… More >

  • Open Access

    ARTICLE

    CALTM: A Context-Aware Long-Term Time-Series Forecasting Model

    Canghong Jin1,*, Jiapeng Chen1, Shuyu Wu1, Hao Wu2, Shuoping Wang1, Jing Ying3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 873-891, 2024, DOI:10.32604/cmes.2023.043230

    Abstract Time series data plays a crucial role in intelligent transportation systems. Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval. Existing approaches, including sequence periodic, regression, and deep learning models, have shown promising results in short-term series forecasting. However, forecasting scenarios specifically focused on holiday traffic flow present unique challenges, such as distinct traffic patterns during vacations and the increased demand for long-term forecastings. Consequently, the effectiveness of existing methods diminishes in such scenarios. Therefore, we propose a novel long-term forecasting model based on scene matching and embedding fusion representation to… More >

  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field are mostly based on a… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on ICEEMDAN-SE-LSTM Neural Network Model with Classifying Seasonal

    Shumin Sun1, Peng Yu1, Jiawei Xing1, Yan Cheng1, Song Yang1, Qian Ai2,*

    Energy Engineering, Vol.120, No.12, pp. 2761-2782, 2023, DOI:10.32604/ee.2023.042635

    Abstract Wind power prediction is very important for the economic dispatching of power systems containing wind power. In this work, a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and (long short-term memory) LSTM neural network is proposed and studied. First, the original data is prepossessed including removing outliers and filling in the gaps. Then, the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model. In addition, this study conducts seasonal classification of the annual data where… More >

  • Open Access

    ARTICLE

    Decentralized Heterogeneous Federal Distillation Learning Based on Blockchain

    Hong Zhu*, Lisha Gao, Yitian Sha, Nan Xiang, Yue Wu, Shuo Han

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3363-3377, 2023, DOI:10.32604/cmc.2023.040731

    Abstract Load forecasting is a crucial aspect of intelligent Virtual Power Plant (VPP) management and a means of balancing the relationship between distributed power grids and traditional power grids. However, due to the continuous emergence of power consumption peaks, the power supply quality of the power grid cannot be guaranteed. Therefore, an intelligent calculation method is required to effectively predict the load, enabling better power grid dispatching and ensuring the stable operation of the power grid. This paper proposes a decentralized heterogeneous federated distillation learning algorithm (DHFDL) to promote trusted federated learning (FL) between different federates in the blockchain. The algorithm… More >

Displaying 1-10 on page 1 of 153. Per Page