Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

    Ponusa Songtipya1,2,*, Thummanoon Prodpran1,2, Ladawan Songtipya1,2, Theerarat Sengsuk1

    Journal of Renewable Materials, Vol.12, No.5, pp. 951-967, 2024, DOI:10.32604/jrm.2024.049068 - 17 July 2024

    Abstract The synergistic effect of organoclay (OC) and zinc oxide (ZnO) nanoparticles on the crucial properties of poly(lactic acid) (PLA) nanocomposite films was systematically investigated herein. After their incorporation into PLA via the solvent casting technique, the water vapor barrier property of the PLA/OC/ZnO film improved by a maximum of 86% compared to the neat PLA film without the deterioration of Young’s modulus or the tensile strength. Moreover, the film’s self-antibacterial activity against foodborne pathogens, including gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, was enhanced by a maximum of approximately 98–99% compared to the neat… More > Graphic Abstract

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

  • Open Access

    REVIEW

    Advances in Research of Molded Pulp for Food Packaging

    Yifan Liu1, Shufeng Ma2, Feijie Wang1, Liqiang Wang1,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3831-3846, 2023, DOI:10.32604/jrm.2023.028251 - 31 October 2023

    Abstract The molded pulp, a product of three-dimensional papermaking technology, is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal. The application of molded pulp for food packaging can replace or reduce the use of plastic food packaging. Researchers extract fibers from plants for the production of safe and hygienic molded pulp for food packaging, and they also study and enhance the qualities of molded pulp to broaden its use in the food industry. This paper reviews the sources and varieties of plant fiber More > Graphic Abstract

    Advances in Research of Molded Pulp for Food Packaging

  • Open Access

    REVIEW

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

    Xiaoyan Liu1,2, Zhao Qin1,2,*, Yuxiang Ma1,2, Huamin Liu1,2,*, Xuede Wang1,2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3203-3225, 2023, DOI:10.32604/jrm.2023.027613 - 26 June 2023

    Abstract Packaging is a food preservation technology widely used in the world. Naturally-sourced, biodegradable polymers are becoming increasingly popular in the food packaging sector. Packaging films prepared using cellulose as raw material would contribute to resource sustainability, but the difficulty of cellulose solubilization limits their further development. In view of this, a series of novel solvent systems (LiCl/DMAc, ILs, TBAH/DMSO, NMMO, alkali/urea solutions, metal-complex solutions) were used to prepare high-strength and high-performance cellulose-based films; their characteristics and the mechanisms involved were investigated. Composite films prepared by blending cellulose with various polymers (synthetic polymers, natural polymers, proteins More > Graphic Abstract

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

  • Open Access

    ARTICLE

    Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging

    Long Li, Yanan Lu, Yu Chen, Jiayi Bian, Li Wang, Li Li*

    Journal of Renewable Materials, Vol.11, No.1, pp. 291-307, 2023, DOI:10.32604/jrm.2022.021456 - 10 August 2022

    Abstract Silver nanoparticles (Ag NPs) are an effective antibacterial agent, but their application in food packaging is limited due to their easy agglomeration and oxidation. In this study, antibacterial microcapsules were fabricated using Ginkgo biloba essential oil (GBEO) as core material and chitosan and type B gelatin biopolymer as capsule materials. These antibacterial microcapsules were then modified with green-synthesized Ag NPs, blended into the biopolymer polylactic acid (PLA), and finally formed as films. Physicochemical properties and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were evaluated. Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial More > Graphic Abstract

    Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging

  • Open Access

    ARTICLE

    Mechanical and Biological Properties of Chitosan Nanocomposite Films: Effects of POSS nanoparticles

    R. VENKATESAN*, S. R. DARSON IMMANUEL JOHN, N. RAJESWARI

    Journal of Polymer Materials, Vol.36, No.3, pp. 261-273, 2019, DOI:10.32381/JPM.2019.36.03.6

    Abstract Nanocomposite films of chitosan (CH) incorporated with different wt. % of the polyoligomericsilsesquioxane (POSS) were prepared by solution casting. The thermal, mechanical, morphological and antimicrobial properties of the nanocomposites were examined. TGA analyses of the nanocomposites indicate that the filler enables the enhancement of thermal stability of chitosan. The tensile strength of the nanocomposite films is enhanced (10.9 MPa for neat chitosan to 24.0MPa for 5wt. % filled chitosan) by the addition of POSS while the elongation at break is reduced. The nanocomposite films exhibited excellent antimicrobial activity against both gram positive and gram negative More >

  • Open Access

    ARTICLE

    Hydroxytyrosol as Active Ingredient in Poly(vinyl alcohol) Films for Food Packaging Applications

    Elena Fortunati1*, Francesca Luzi1, Chiara Fanali2, Laura Dugo2, Maria Giovanna Belluomo2, Luigi Torre1, José Maria Kenny1, Luca Santi3, Roberta Bernini3

    Journal of Renewable Materials, Vol.5, No.2, pp. 81-95, 2017, DOI:10.7569/JRM.2016.634132

    Abstract Hydroxytyrosol (HTyr), a biophenol found in extra-virgin olive oil or olive oil by-products, well known for its strong antioxidant activity, was used as active ingredient for poly(vinyl alcohol) (PVA) matrix to develop film formulations by solvent casting process. The effect of HTyr on the morphological, thermal stability, optical, mechanical and release properties of PVA were investigated, while water absorption capacity, migration with food stimulants, water vapor permeability and antioxidant properties were tested taking into account the final application as food packaging systems. Morphological investigations evidenced homogeneity of all PVA/HTyr films, while the presence of HTyr More >

Displaying 1-10 on page 1 of 6. Per Page