Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

    Ivan Sboev1,*, Tatyana Lyubimova2,3, Konstantin Rybkin3, Michael Kuchinskiy2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1425-1439, 2024, DOI:10.32604/fdmp.2024.051341 - 27 June 2024

    Abstract The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis, extraction and separation. One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber. Cavitation has a strong impact on the surface degradation mechanisms. In this work, a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics. The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions More > Graphic Abstract

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

  • Open Access

    ARTICLE

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

    Michael Kuchinskiy1,2,*, Tatyana Lyubimova1,2, Konstantin Rybkin2, Anastasiia Sadovnikova2, Vasiliy Galishevskiy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1093-1102, 2024, DOI:10.32604/fdmp.2024.050059 - 07 June 2024

    Abstract Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaning and chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlled by changing relevant influential parameters. In particular, in this work, we experimentally investigate the effect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at a frequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualization using heat maps. It is found that at low NaCl concentration (0.3 mol/L), the More > Graphic Abstract

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

Displaying 1-10 on page 1 of 2. Per Page