Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    ProNet Adaptive Retinal Vessel Segmentation Algorithm Based on Improved UperNet Network

    Sijia Zhu1,*, Pinxiu Wang2, Ke Shen1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 283-302, 2024, DOI:10.32604/cmc.2023.045506 - 30 January 2024

    Abstract This paper proposes a new network structure, namely the ProNet network. Retinal medical image segmentation can help clinical diagnosis of related eye diseases and is essential for subsequent rational treatment. The baseline model of the ProNet network is UperNet (Unified perceptual parsing Network), and the backbone network is ConvNext (Convolutional Network). A network structure based on depth-separable convolution and 1 × 1 convolution is used, which has good performance and robustness. We further optimise ProNet mainly in two aspects. One is data enhancement using increased noise and slight angle rotation, which can significantly increase the… More >

  • Open Access

    ARTICLE

    Deep Learning with a Novel Concoction Loss Function for Identification of Ophthalmic Disease

    Sayyid Kamran Hussain1, Ali Haider Khan2,*, Malek Alrashidi3, Sajid Iqbal4, Qazi Mudassar Ilyas4, Kamran Shah5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3763-3781, 2023, DOI:10.32604/cmc.2023.041722 - 08 October 2023

    Abstract As ocular computer-aided diagnostic (CAD) tools become more widely accessible, many researchers are developing deep learning (DL) methods to aid in ocular disease (OHD) diagnosis. Common eye diseases like cataracts (CATR), glaucoma (GLU), and age-related macular degeneration (AMD) are the focus of this study, which uses DL to examine their identification. Data imbalance and outliers are widespread in fundus images, which can make it difficult to apply many DL algorithms to accomplish this analytical assignment. The creation of effcient and reliable DL algorithms is seen to be the key to further enhancing detection performance. Using… More >

  • Open Access

    ARTICLE

    Short Text Entity Disambiguation Algorithm Based on Multi-Word Vector Ensemble

    Qin Zhang1, Xuyu Xiang1,*, Jiaohua Qin1, Yun Tan1, Qiang Liu1, Neal N. Xiong2

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 227-241, 2021, DOI:10.32604/iasc.2021.017648 - 26 July 2021

    Abstract With the rapid development of network media, the short text has become the main cover of information dissemination by quickly disseminating relevant entity information. However, the lack of context in the short text can easily lead to ambiguity, which will greatly reduce the efficiency of obtaining information and seriously affect the user’s experience, especially in the financial field. This paper proposed an entity disambiguation algorithm based on multi-word vector ensemble and decision to eliminate the ambiguity of entities and purify text information in information processing. First of all, we integrate a variety of unsupervised pre-trained… More >

  • Open Access

    ARTICLE

    Vehicle Re-Identification Model Based on Optimized DenseNet121 with Joint Loss

    Xiaorui Zhang1,2,*, Xuan Chen1, Wei Sun2, Xiaozheng He3

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3933-3948, 2021, DOI:10.32604/cmc.2021.016560 - 01 March 2021

    Abstract With the increasing application of surveillance cameras, vehicle re-identification (Re-ID) has attracted more attention in the field of public security. Vehicle Re-ID meets challenge attributable to the large intra-class differences caused by different views of vehicles in the traveling process and obvious inter-class similarities caused by similar appearances. Plentiful existing methods focus on local attributes by marking local locations. However, these methods require additional annotations, resulting in complex algorithms and insufferable computation time. To cope with these challenges, this paper proposes a vehicle Re-ID model based on optimized DenseNet121 with joint loss. This model applies… More >

Displaying 1-10 on page 1 of 4. Per Page