Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe with Merged Liquid Slugs

    Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1381-1397, 2024, DOI:10.32604/fhmt.2024.056624 - 30 October 2024

    Abstract Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe (PHP). The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 and a height of 1.1 . The evaporator and condenser sections were 25 and 50 long, respectively, and the adiabatic section in between was 75 mm long. Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene, the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP. The PHP was charged with hydrofluoroether-7100.… More >

  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502 - 21 March 2024

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on the Transient Flow Behavior in Gasoline Refueling System

    Chenlin Zhu1, Yan Zhao1, Zhitao Jiang1, Jiafeng Xie3, Lifang Zeng2,*, Lijuan Qian1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 107-127, 2024, DOI:10.32604/fhmt.2023.044433 - 21 March 2024

    Abstract Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation. This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method. The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube. The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part. For both the experiment and simulation, the pressure at the end of the refueling pipe… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Droplet Generation in Coaxial Microchannels

    Zongjun Yin*, Rong Su, Hui Xu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 487-504, 2024, DOI:10.32604/fdmp.2023.042631 - 12 January 2024

    Abstract In this study, numerical simulations of the pinching-off phenomena displayed by the dispersed phase in a continuous phase have been conducted using COMSOL Multiphysics (level-set method). Four flow patterns, namely “drop flow”, “jet flow”, “squeeze flow”, and “co-flow”, have been obtained for different flow velocity ratios, channel diameter ratios, density ratios, viscosity ratios, and surface tension. The flow pattern map of two-phase flow in coaxial microchannels has been obtained accordingly, and the associated droplet generation process has been critically discussed considering the related frequency, diameter, and pinch-off length. In particular, it is shown that the More > Graphic Abstract

    Numerical Simulation of Droplet Generation in Coaxial Microchannels

  • Open Access

    ARTICLE

    Optimal Concentration of the Bubble Drainage Agent in Foam Drainage Gas Recovery Applications

    Shaopeng Liu1, Guowei Wang2,3,*, Pengfei Liu1, Dong Ye1, Jian Song1, Xing Liu1, Yang Cheng2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3045-3058, 2023, DOI:10.32604/fdmp.2023.029810 - 27 October 2023

    Abstract Foam drainage is the flow of liquid through the interstitial spaces between bubbles driven by capillarity and gravity and resisted by viscous damping. The so-called foam drainage gas recovery technology is a technique traditionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production. In this context, determining the optimal concentration of the bubble drainage agent is generally crucial for the proper application of this method. In this study, a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to… More >

  • Open Access

    ARTICLE

    USE OF SILVER NANOPARTICLES MIXED WITH DEIONIZED WATER IN A RECTANGULAR TWO-PHASE CLOSED THERMOSYPHON: A CASE STUDY OF THE TWO-PHASE FLOW

    Namphon Pipatpaiboona , Teerapat Chompookhamb, Sampan Rittidechb, Yulong Dingc, Thanya Parametthanuwatd, Surachet Sichamnana,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.24

    Abstract When nanofluid (NF) is used as the working fluid in a rectangular two-phase closed thermosyphon (RTPCT), the formations and heat performance of two-phase flow patterns are explored qualitatively. Silver nanoparticles were mixed with deionized water at a concentration of 0.5 wt% in the NF. Nanoparticles improved the thermal contact surface area within the base flow, allowing the base fluid to boil quickly and easily. When the working fluid was boiled, NF also demonstrated high thermal conductivity capabilities, which diffused and moved along with the dual flow patterns. As a result, these qualities improved the RTPCT's More >

  • Open Access

    ARTICLE

    Modeling of Heat Transfer and Steam Condensation Inside a Horizontal Flattened Tube

    M. Gh. Mohammed Kamil1,*, M. S. Kassim1, R. A. Mahmood2,3, L. AZ Mahdi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 985-998, 2022, DOI:10.32604/fdmp.2022.018938 - 06 April 2022

    Abstract This work investigates the steam condensation phenomena in an air-cooled condenser. The considered horizontal flattened tube has a 30 mm hydraulic diameter, and its length is a function of the steam quality with a limit value between 0.95 and 0.05. The mass flow rate ranges from 4 to 40 kg/m2.s with a saturated temperature spanning an interval from 40°C to 80°C. A special approach has been implemented using the Engineering Equation Solver (EES) to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients. A wavy-stratified structure of the two-phase flow More >

  • Open Access

    ARTICLE

    ALGORITHM AND INFLUENCE FACTOR STUDY ON FLOW PATTERN TRANSITION FROM STRATIFIED FLOW TO NON-STRATIFIED FLOW OF GAS-LIQUID TWO-PHASE FLOW

    Rongge Xiaoa,*, Dong Wanga, Shuaishuai Jina, Hongping Yub, Bo Liua

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-9, 2021, DOI:10.5098/hmt.16.11

    Abstract Based on the Viscous Kelvin-Helmholtz theory used by D. Barnea & Y. Taitel (1993), a two-fluid stratified flow model of gas-liquid two-phase flow is established. Using the mathematical derivation, the influence of various influence factors on the stability of liquid level structure is synthesized. Compared with the criteria of D Barnea & Y. Taitel (1993) and Taitel & Dukler(1976) , and the algorithm of flow pattern transition criterion of stratified flow is proposed. According to the data of multiphase flow experimental loop, the influence of liquid viscosity and the instantaneous volume flow rate change of More >

  • Open Access

    ARTICLE

    EFFECTS OF EVAPORATING TEMPERATURE ON FLOW PATTERN IN A HORIZONTAL EVAPORATOR

    Andriyanto Setyawana,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.22

    Abstract In this paper, the effect of evaporating temperature on the void fraction and flow pattern of R290 in an evaporator of air conditioning unit has been studied. The analysis was carried out for evaporator diameter of 7.9 mm and 6.3 mm and cooling capacity of 2.64 kW and 5.28 kW. The analysis was conducted at evaporating temperature of -20°C to +5°C with an increment of 5°C. At the inlet of evaporator, the void fraction ranges from 0.932 to 0.984, whereas at the outlet the void fraction is 1. Testing the void fraction by using 3… More >

  • Open Access

    ARTICLE

    Improving Existing Drainage and Gas Recovery Technologies: An Experimental Study on the Wellbore Flow in a Horizontal Well

    Shan Jin1,2,3, Xiaohong Bai4, Wei Luo1,2,3,*, Li Li4, Ruiquan Liao1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1229-1242, 2020, DOI:10.32604/fdmp.2020.011051 - 17 December 2020

    Abstract With the increasing number of horizontal wells with low pressure, low yield, and water production, the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious. In order to fix these issues, it is necessary to improve existing drainage and gas recovery technologies, increase the fluid carrying capacity of these wells, and ensure that the bottom-hole airflow has enough energy to transport the liquid to the wellhead. Among the many techniques of drainage and gas recovery, the gas lift has recently become a popular method. In the present study, through the… More >

Displaying 1-10 on page 1 of 22. Per Page