Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,322)
  • Open Access

    PROCEEDINGS

    Use of Hybrid-PINNs for Fast Predictions of Transport Structures in the Cz-Melt in Growth of Bulk Silicon Single Crystals

    Yasunori Okano1,*, Tsuyoshi Miyamoto1, Sadik Dost2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011685

    Abstract We have developed a machine learning model, called Hybrid-PINNs (Physics Informed Neural Networks), and applied for fast predictions of transport structures (flow and thermal fields) in the silicon (Si) melt during the Czochralski (Cz) bulk single crystal growth. Si bulk single crystals are mostly grown by the Cz method. For the growth of high-quality Si crystals with this method, it is essential to understand and control these transport structures in the melt. Since the direct observation of such transport fields in the melt during growth is usually impossible, numerical simulations provide a powerful tool for… More >

  • Open Access

    PROCEEDINGS

    From the Hybrid Lattice Boltzmann Model for Compressible Flows to a Unified Finite Volume solver

    Jinhua Lu1,*, Song Zhao1, Pierre Boivin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011180

    Abstract The hybrid lattice Boltzmann model [1] for compressible flows uses the lattice Boltzmann method (LBM) to simulate the flow field and the finite volume scheme for the energy field. It inherits the good numerical stability and low dissipation [2] of LBM and avoids the complexity of solving all governing equations within the LBM framework. However, it still faces three issues. First, for compressible flows, the equilibrium distribution functions must exactly recover third-order moments, but it cannot be achieved for the simple DmQn (m dimensions and n discrete phase velocities) models involving only neighboring nodes [3],… More >

  • Open Access

    PROCEEDINGS

    Integrated Workflow of Design for Additive Manufacturing: From Topology Optimization to Distortion Compensation

    Chen Wang1,*, Pan Wang1, Jiazhao Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011846

    Abstract Industry 4.0 promises to bring significant changes to general additive manufacturing (AM) systems, ushered by the incorporation of digital twin development to capture high-volume data in an integrated and automated way [1]. During this transformation, it is required to develop advanced methods to solve main problems in the large-scale industrial use of AM technology. One of the challenges is how to eliminate or mitigate the structural distortion due to thermal effect during AM processes [2-4]. To reduce the level of distortion, a general hands-on approach is to compensate the geometry based on physical measurements of… More >

  • Open Access

    PROCEEDINGS

    Towards High Reynolds Number Flows by a High-Order SPH Method

    Zifei Meng1, Pengnan Sun1,*, Yang Xu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011674

    Abstract DNS simulations on incompressible flows with high Reynolds number using meshfree methods remain an enduring challenge to be addressed. In the present work, we attempt to use a high-order SPH scheme (TENO-SPH) to make DNS simulations on high Reynolds number flows. To investigate this, several spatial reconstructions are applied under the Riemann-ALE-SPH framework, and their performances are compared. Particularly, the accuracy of SPH is significantly enhanced by WENO and TENO reconstructions. For free surface flows, we implement a Lagrangian TENO-SPH to reproduce these flows at different Reynolds numbers. More importantly, to make DNS simulations, the More >

  • Open Access

    PROCEEDINGS

    Non-Newtonian Rheology of Cell Suspension in a Porous Scaffold During Perfusion Cell Seeding

    Ziying Zhang1,*, Chu Li1, Junwei Zhu1, Qinghong Wu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010912

    Abstract The process of perfusion seeding of cells into a porous scaffold represents a pivotal initial stage in the development of tissue-engineered bones. The rheological behavior of the cell suspension plays a crucial role in influencing the transport and distribution of cells within the scaffold. Currently, there is limited understanding of the non-Newtonian rheology of cell suspensions in complex pores which differs significantly from simple channels or linear shear flow. In this study, we utilize our previously developed mesoscopic model of perfusion cell seeding to investigate the rheological behavior of cell suspensions at the cellular scale. More >

  • Open Access

    PROCEEDINGS

    Analysis of Aeroacousticelastic Response for Cavity-Plate System Undergoing Supersonic Flow

    Yifei Li1, Ruisen Yang1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013359

    Abstract Cavity closed with a thin plate is a common structure in aircrafts, such as landing gear compartments and skin skeletons. The plate undergoing aerodynamic pressure on top is generally vibrating in the amplitude of thickness, which will induce an acoustic pressure in the cavity underneath and it will further affect the panel response. Considering both aerodynamic and acoustic pressure on the panel, there will be an interest to investigate the aero-acoustic-structure coupling mechanism and the aeroacoustoelastic response of the plate. Von Karman plate theory, piston theory and two-dimensional partial differential acoustic equation are employed for… More >

  • Open Access

    PROCEEDINGS

    A New Flow Regulation Strategy by Coupling Multiple Methods for High Efficiency Turbine with Wide Conditions

    Ziran Li1, Weihao Zhang2, Lei Qi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013344

    Abstract In the future, the wide speed and altitude range aviation engine will have features such as "wide range of high-bypass-ratio adjustment" and "wide range of high-pressure-ratio adjustment". Therefore, its turbine will work in a very wide range of operating conditions, with a large flow regulation range. Under conditions of high-rate flow regulation, existing flow control technologies can significantly reduce turbine efficiency. To support the performance and technical specifications of future engines, their low-pressure turbines need to maintain high operational efficiency within a flow regulation range and power output range that exceed those of current aircraft engines.
    More >

  • Open Access

    PROCEEDINGS

    Marangoni Convection Shifting, Heat Accumulation and Microstructure Evolution of Laser Directed Energy Deposition

    Donghua Dai1,2,*, Yanze Li1,2, Dongdong Gu1,2,*, Wentai Zhao1,2, Yuhang Long1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012500

    Abstract Laser Directed Energy Deposition (LDED) technology was employed to fabricate internal structures within the hollow interiors of rotating parts, such as tubes and cylinders. A three-dimensional transient multiphysics model for C276 material was developed, which anticipated the impact of angular velocity from tube rotation on various aspects. This model, validated by experiments, focused on the melt pool morphology, Marangoni convection, oriented crystal microevolution, and deposited material microhardness. It was found that at 150 ms deposition, the dimensions of the melt pool stabilized. With an increase in the Peclet number, heat transfer within the melt pool… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation of Fluid Flow Evolution in Porous Sea Ice Based on TMPD

    Ying Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011329

    Abstract Granular and columnar sea ice formed random pores containing gas and brine while growing in a polar environment. Building an appropriate microstructure of sea ice model to reveal its material singularities using standard methods is difficult. In this study, we develop a porous sea ice model based on coupled thermos-mechanical peridynamics [1-3] by considering the fluid flow and material transport in pores. The novel features of using the porous sea ice peridynamic model are as follows: (1) To establish the porous sea ice model, the sea ice pore equation is combined with the peridynamic equations. More >

  • Open Access

    PROCEEDINGS

    Bubble Dynamics Within a Droplet: A New Mechanism for Mixing in Binary Immiscible Fluid Systems

    Zhesheng Zhao1, Shuai Li1, Rui Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012080

    Abstract This study investigates the interactions between droplets and bubbles within water-in-oil (O/W) and oil-in-water (W/O) systems, a fundamental problem of bubble dynamics in binary immiscible fluid systems. Considering the density ratio between the two fluids and the bubble-to-droplet size ratio, we have refined the classical spherical bubble pulsation equation, Rayleigh collapse time, and the natural frequency. In our experimental study, we found that the Rayleigh-Taylor (RT) instability hardly develops on the surface of the droplet when the densities of the two liquids are comparable. This phenomenon is explained using the classic theory of spherical RT More >

Displaying 1-10 on page 1 of 1322. Per Page