Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Impact and Residual Flexural Properties of 3D Integrated Woven Spacer Composites

    Mahim Masfikun Hannan, Deng’an Cai*, Xinwei Wang

    Journal of Polymer Materials, Vol.42, No.3, pp. 873-891, 2025, DOI:10.32604/jpm.2025.064978 - 30 September 2025

    Abstract This study investigates the low-velocity impact and post-impact flexural properties of 3D integrated woven spacer composites, focusing on their orthotropic behavior when tested along two principal directions, i.e., warp (X-type) and weft (Y-type) directions. The same composite material was tested in these orientations to evaluate the differences in impact resistance and residual bending strength. Specimens were fabricated via vacuum-assisted molding and tested at 2, 3, 5, and 7 J impact energies using an Instron Ceast 9350 drop-weight impact testing machine, in accordance with ASTM D7136. Post-impact flexural tests were performed using a four-point bending method… More >

  • Open Access

    ARTICLE

    Flexural Performance of UHPC-Reinforced Concrete T-Beams: Experimental and Numerical Investigations

    Guangqing Xiao1, Xilong Chen1, Lihai Xu1, Feilong Kuang2, Shaohua He2,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1167-1181, 2025, DOI:10.32604/sdhm.2025.064450 - 05 September 2025

    Abstract This study investigates the flexural performance of ultra-high performance concrete (UHPC) in reinforced concrete T-beams, focusing on the effects of interfacial treatments. Three concrete T-beam specimens were fabricated and tested: a control beam (RC-T), a UHPC-reinforced beam with a chiseled interface (UN-C-50F), and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars (UN-CS-50F). The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer, with the UN-CS-50F exhibiting the highest flexural resistance. The cracking load and… More >

  • Open Access

    ARTICLE

    Sensitive Analysis on the Compressive and Flexural Strength of Carbon Nanotube-Reinforced Cement Composites Using Machine Learning

    Ahed Habib1,*, Mohamed Maalej2, Samir Dirar3, M. Talha Junaid2, Salah Altoubat2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 789-817, 2025, DOI:10.32604/sdhm.2025.064882 - 30 June 2025

    Abstract Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties, particularly in compressive and flexural strength. Despite extensive research, the influence of various parameters on these properties remains inadequately understood, primarily due to the complex interactions within the composites. This study addresses this gap by employing machine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites. It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal trade-offs between predictive accuracy and computational complexity, which has not previously been explored… More >

  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

  • Open Access

    PROCEEDINGS

    Optimal Design of Energy Harvester with Wind-Induced Bluff Body Flexural Electric Cantilever Structure

    Ying Luo1,*, Hanxuan Xu1, Hongguang Liu1, Chenguang Xu1, Xingchuan Liao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012595

    Abstract This study focuses on the widespread utilization of environmental wind energy to power electronic devices and wireless network sensor nodes with low energy consumption characteristics. It explores the influence of relevant geometric parameters of wind-excited bluff body flexible electric cantilever structures on energy harvesting systems, aiming to enhance effective wind energy collection over a wider range of wind speeds. Through numerical analysis, considering the effects of flexible electric cantilever beam dimensions and rectangular cross-sectional bluff body dimensions on the critical flutter wind speed of the energy harvester, optimal structural parameters of the rectangular cross-sectional bluff… More >

  • Open Access

    PROCEEDINGS

    Enhancing the Interlayer and Flexural Performance with SHCC as Bonding Agents in 3D Concrete Printing

    Fei Teng1, Yiwei Weng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012282

    Abstract 3D concrete printing (3DCP) has challenges in weak interlayer bond strength and steel reinforcement integration. Existing methods to improve the interlayer bond strength and integrate steel reinforcement have limitations in automatic operation and limited mechanical performance improvement. Strain hardening cementitious composites (SHCC), with the high tensile strength and tensile strain capacity, have the potential to achieve self-reinforced structures in 3DCP. Nevertheless, the wider adoption of SHCC in 3DCP is limited by the high cost of fibers and fiber agglomeration during printing.
    To fill the gap, this study investigates the use of SHCC as bonding agent of… More >

  • Open Access

    ARTICLE

    A Hermitian C Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates

    Chih-Ping Wu*, Ruei-Syuan Chang

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 917-949, 2024, DOI:10.32604/cmes.2024.052307 - 20 August 2024

    Abstract This work develops a Hermitian C differential reproducing kernel interpolation meshless (DRKIM) method within the consistent couple stress theory (CCST) framework to study the three-dimensional (3D) microstructure-dependent static flexural behavior of a functionally graded (FG) microplate subjected to mechanical loads and placed under full simple supports. In the formulation, we select the transverse stress and displacement components and their first- and second-order derivatives as primary variables. Then, we set up the differential reproducing conditions (DRCs) to obtain the shape functions of the Hermitian C differential reproducing kernel (DRK) interpolant’s derivatives without using direct differentiation. The interpolant’s… More >

  • Open Access

    ARTICLE

    Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

    Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3

    Journal of Renewable Materials, Vol.12, No.4, pp. 843-867, 2024, DOI:10.32604/jrm.2024.049942 - 12 June 2024

    Abstract The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on… More >

  • Open Access

    ARTICLE

    Reinforcement Effect of Recycled CFRP on Cement-Based Composites: With a Comparison to Commercial Carbon Fiber Powder

    Hantao Huang, Zhifang Zhang*, Zhenhua Wu, Yao Liu

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 409-423, 2024, DOI:10.32604/sdhm.2024.048597 - 05 June 2024

    Abstract In this paper, recycled carbon fiber reinforced polymer (CFRP) mixture (CFRP-M, including recycled carbon fiber and powder) and refined recycled CFRP fiber (CFRP-F, mostly recycled carbon fiber) were added to cement to study the influence of addition on the flexural strength, compressive strength, and fluidity of cement-based materials. The recycled CFRP were prepared by mechanically processing the prepreg scraps generated during the manufacture of CFRP products. For comparison, commercial carbon fiber powder was also added in cement and the performance was compared to that of addition of recycled CFRP. The hydration products and strengthening mechanism… More >

  • Open Access

    PROCEEDINGS

    Progressive Failure Analysis of Composite Laminates Subjected to Transverse Loading with Augmented Finite Element Method

    Shu Li1,*, Yan Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09078

    Abstract In this paper, two-dimensional (2D) orthotropic augmented finite element method (A-FEM) is applied to account for progressive failure of composite laminates under transverse loading, which considers all major cracking modes (delamination, fiber kinking/rupture matrix cracking). High-fidelity simulations of different stacking composite laminates under transverse loading are implemented. Both predicted load−deflection curves and damage evolution are in good agreement with that of experimental results, which demonstrates the numerical capability of A-FEM. In addition, the influence of stacking sequence on the failure mechanism is also studied by predicted damage evolution of laminates with different stacking sequence. Results More >

Displaying 1-10 on page 1 of 38. Per Page