Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    The Numerical Simulation of Nanofluid Flow in Complex Channels with Flexible Wall

    Amal A. Harbood*, Hameed K. Hamzah, Hatem H. Obeid

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 293-315, 2023, DOI:10.32604/fhmt.2023.01518 - 30 November 2023

    Abstract The current work seeks to examine numerical heat transfer by using a complicated channel with a trapezoid shape hanging in the channel. This channel demonstrates two-dimensional laminar flow, forced convective flow, and incompressible flow. To explore the behavior of heat transfer in complex channels, several parameters, such as the constant Prandtl number (Pr = 6.9), volume fraction (ϕ) equal to (0.02 to 0.04), Cauchy number (Ca) equal to (10−4 to 10−8), and Reynolds number equal to (60 to 160) were utilized. At the complex channel, different elastic walls are used in different locations, with case A… More >

  • Open Access

    ARTICLE

    Buoyancy Effects in the Peristaltic Flow of a Prandtl-Eyring Nanofluid with Slip Boundaries

    Hina Zahir*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1507-1519, 2023, DOI:10.32604/fdmp.2023.022520 - 30 January 2023

    Abstract The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions, such as the presence of a heat source/sink and slip effects in channels with a curvature. This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology. A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations, which are then integrated numerically. The investigation reveals that nanofluids have valuable thermal capabilitises. More >

Displaying 1-10 on page 1 of 2. Per Page