Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    XGBoost-Based Active Learning for Wildfire Risk Prediction

    Hongrong Wang1,2, Hang Geng1,*, Jing Yuan1, Wen Zhang2, Hanmin Sheng1, Qiuhua Wang3, Xinjian Li4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3701-3721, 2025, DOI:10.32604/cmes.2025.073513 - 23 December 2025

    Abstract Machine learning has emerged as a key approach in wildfire risk prediction research. However, in practical applications, the scarcity of data for specific regions often hinders model performance, with models trained on region-specific data struggling to generalize due to differences in data distributions. While traditional methods based on expert knowledge tend to generalize better across regions, they are limited in leveraging multi-source data effectively, resulting in suboptimal predictive accuracy. This paper addresses this challenge by exploring how accumulated domain expertise in wildfire prediction can reduce model reliance on large volumes of high-quality data. An active More >

  • Open Access

    ARTICLE

    Study of Burning Behaviors and Fire Risk of Flame Retardant Plywood by Cone Calorimeter and TG Test

    Liping Yu1, Zhongyou Luo1, Lifen Li1, Xuedong Xi2,3, Zhigang Wu1,2,*, Bengang Zhang4,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2143-2157, 2021, DOI:10.32604/jrm.2021.016092 - 22 June 2021

    Abstract A flame retardant composition was prepared by using phosphoguanidine, guanidine sulfamate, disodium octaborate tetrahydrate and dodecyl dimethyl benzyl ammonium chloride. Veneers were immersed in such flame retardant mixture to prepare plywood. The combustion characteristics and thermal stability of plywood were assessed using a cone calorimeter and TG. Results showed that: (1) High concentration and loading of flame retardant were beneficial for the fire resistance of the plywood. (2) The limiting oxygen index (LOI) and residual mass of plywood processed using the flame retardant was increased by 87.52% and 58.66% compared to those of the untreated… More >

Displaying 1-10 on page 1 of 2. Per Page