Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ABSTRACT

    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is connected by variable-node finite elements… More >

  • Open Access

    ABSTRACT

    Optimal 4-node shell and 3d-shell finite elements for nonlinear analysis

    B. Brank1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.3, pp. 81-86, 2007, DOI:10.3970/icces.2007.002.081

    Abstract First we shortly present several low-order (4-node) shell finite element formulations (based on Reissner-Mindlin kinematics) that allow for accurate and efficient (with coarse and distorted meshes) analysis of shell-like structures subjected to large deformations and rotations. The formulations are based on mixed variational principle, enhanced assumed strain (EAS) method (based on Green-Lagrange strains) and assumed natural strain (ANS) method. The EAS method is used in all formulations in order to improve both membrane and bending behavior of the 4-node element (the formulations differ from one another by the number of assumed EAS parameters), and the ANS method is used to… More >

  • Open Access

    ARTICLE

    Eliminating Slivers in Three-Dimensional Finite Element Models

    R.H. Moore1, S. Saigal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 283-292, 2005, DOI:10.3970/cmes.2005.007.283

    Abstract An efficient method for treating slivers and other poorly shaped elements in finite element solutions is presented. A major difficulty for finite element analyses arises from the creation of slivers in automated mesh generation. Sliver shaped elements can degrade the accuracy of a solution and are difficult to remove from a mesh. The proposed method treats slivers by first merging them with neighboring elements to form polyhedra and next subdividing the polyhedra into well-shaped tetrahedral elements. The method does not require the cumbersome and expensive operations of addition or rearrangement of nodes. The validity and accuracy of the present method… More >

  • Open Access

    ARTICLE

    A Mixed Perfectly-Matched-Layer for Transient Wave Simulations in Axisymmetric Elastic Media

    S. Kucukcoban1, L.F. Kallivokas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.2, pp. 109-146, 2010, DOI:10.3970/cmes.2010.064.109

    Abstract We are concerned with elastic wave simulations arising in elastic, semi-infinite, heterogeneous, three-dimensional media with a vertical axis of symmetry through the coordinate origin. Specifically, we discuss the development of a new mixed displacement-stress formulation in PML-truncated axisymmetric media for forward elastic wave simulations. Typically, a perfectly-matched-layer (PML) is used to surround a truncated finite computational domain in order to attenuate outwardly propagating waves without reflections for all non-zero angles-of-incidence and frequencies. To date, standard formulations use split fields, where the displacement components are split into normal and parallel to the PML interface components. In this work, we favor unsplit… More >

  • Open Access

    ARTICLE

    Tumor Growth Modeling from the Perspective of Multiphase Porous Media Mechanics

    G. Sciumè∗,†, S.E. Shelton, W.G. Gray, C.T. Miller, F. Hussain§,¶, M. Ferrari, P. Decuzzi, B.A. Schrefler∗,¶

    Molecular & Cellular Biomechanics, Vol.9, No.3, pp. 193-212, 2012, DOI:10.3970/mcb.2012.009.193

    Abstract Multiphase porous media mechanics is used for modeling tumor growth, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). This approach incorporates the interaction of more phases than legacy tumor growth models. The tumor is treated as a multiphase system composed of an extracellular matrix, tumor cells which may become necrotic depending on nutrient level and pressure, healthy cells and an interstitial fluid which transports nutrients. The governing equations are numerically solved within a Finite Element framework for predicting the growth rate of the tumor mass, and of its individual components, as a function of the initial tumor-to-healthy… More >

  • Open Access

    ARTICLE

    Analysis of Functionally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties

    Peter L. Bishay1, Jan Sladek2, Vladimir Sladek2, Satya N. Atluri1

    CMC-Computers, Materials & Continua, Vol.29, No.3, pp. 213-262, 2012, DOI:10.3970/cmc.2012.029.213

    Abstract A new class of hybrid/mixed finite elements, denoted "HMFEM-C", has been developed for modeling magneto-electro-elastic (MEE) materials. These elements are based on assuming independent strain-fields, electric and magnetic fields, and collocating them with the strain-fields, electric and magnetic fields derived from the primal variables (mechanical displacements, electric and magnetic potentials) at some cleverly chosen points inside each element. The newly developed elements show significantly higher accuracy than the primal elements for the electric, magnetic as well as the mechanical variables. HMFEM-C is invariant through the use of the element-fixed local orthogonal base vectors, and is stable since it is not… More >

  • Open Access

    ARTICLE

    Development of 3D T-Trefftz Voronoi Cell Finite Elements with/without Spherical Voids &/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials

    L. Dong1, S. N. Atluri1

    CMC-Computers, Materials & Continua, Vol.29, No.2, pp. 169-212, 2012, DOI:10.3970/cmc.2012.029.169

    Abstract In this paper, three-dimensionalT-Trefftz Voronoi Cell Finite Elements (VCFEM-TTs) are developed for micromechanical modeling of heterogeneous materials. Several types of VCFEMs are developed, depending on the types of heterogeneity in each element. Each VCFEM can include alternatively a spherical void, a spherical elastic inclusion, a spherical rigid inclusion, or no voids/inclusions at all.In all of these cases, an inter-element compatible displacement field is assumed at each surface of the polyhedral element, with Barycentric coordinates as nodal shape functions.The T-Trefftz trial displacement fields in each element are expressed in terms of the Papkovich-Neuber solution. Spherical harmonics are used as the Papkovich-Neuber… More >

  • Open Access

    ARTICLE

    Computational Modeling of Dual-Phase Ceramics with Finsler-Geometric Phase Field Mechanics

    John D. Clayton1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 333-350, 2019, DOI:10.32604/cmes.2019.06342

    Abstract A theory invoking concepts from differential geometry of generalized Finsler space in conjunction with diffuse interface modeling is described and implemented in finite element (FE) simulations of dual-phase polycrystalline ceramic microstructures. Order parameters accounting for fracture and other structural transformations, notably partial dislocation slip, twinning, or phase changes, are dimensionless entries of an internal state vector of generalized pseudo-Finsler space. Ceramics investigated in computations are a boron carbide-titanium diboride (B4C-TiB2) composite and a diamond-silicon carbide (C-SiC) composite. Deformation mechanisms-in addition to elasticity and cleavage fracture in grains of any phase-include restricted dislocation glide (TiB2 phase), deformation twinning (B4C and β-SiC… More >

  • Open Access

    ARTICLE

    Development of Non-Dissipative Direct Time Integration Method for Structural Dynamics Application

    Sun-Beom Kwon1, Jae-Myung Lee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 41-89, 2019, DOI:10.31614/cmes.2019.03879

    Abstract A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics. The proposed method is a one-parameter non-dissipative scheme. Improved stability, accuracy, and dispersion characteristics are achieved using appropriate values of the parameter. The proposed scheme has second-order accuracy with and without physical damping. Moreover, its stability, accuracy, and dispersion are analyzed. In addition, its performance is demonstrated by the two-dimensional scalar wave problem, the single-degree-of-freedom problem, two degrees-of-freedom spring system, and beam with boundary constraints. The wave propagation problem is solved in the high frequency wave regime to demonstrate the advantage of… More >

  • Open Access

    ARTICLE

    Glass Fibre Reinforced Concrete Rebound Optimization

    Sadık Alper YILDIZEL1, Muhammet Ensar YİĞİT2, Gökhan KAPLAN3

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.2, pp. 203-218, 2017, DOI:10.3970/cmes.2017.113.211

    Abstract Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles. Rebounded concrete amount cause a significant difference between the initial mix design and emplaced mix compositions. Apart from the structural differences, it comes with a cost increase which was resulted by the splashed concrete amount. Many factors such as viscosity and quantity of mixes dominate this rebound amount in sprayed glass fibre reinforced concrete applications depending on production technologies and processes; however, this research focuses on the spray distance and the angle of the spray gun which mainly effects the rebound amount… More >

Displaying 11-20 on page 2 of 53. Per Page