Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes

    Yong Xu1,2, Xuewei Zhang1, Wenlong Xie2,*, Shihong Zhang2, Xinyue Huang3, Yaqiang Tian1, Liansheng Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2753-2768, 2024, DOI:10.32604/cmc.2024.055408 - 18 November 2024

    Abstract The design of the loading path is one of the important research contents of the tube hydroforming process. Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization. In this paper, the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object. Fuzzy control was used to optimize the loading path, and the fuzzy rule base was established based on FEM. The minimum wall thickness and wall thickness reduction rate were determined as input membership functions, and the axial feeds variable value… More >

  • Open Access

    ARTICLE

    Reliability Prediction of Wrought Carbon Steel Castings under Fatigue Loading Using Coupled Mold Optimization and Finite Element Simulation

    Muhammad Azhar Ali Khan1, Syed Sohail Akhtar2,3,*, Abba A. Abubakar2,4, Muhammad Asad1, Khaled S. Al-Athel2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2325-2350, 2024, DOI:10.32604/cmes.2024.054741 - 31 October 2024

    Abstract The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations. The optimization of the mold is carried out using MAGMASoft mainly based on porosity reduction as a response. After validating the initial mold design with experimental data, a spring flap, a common component of an automotive suspension system is designed and optimized followed by fatigue life prediction based on simulation using Fe-safe. By taking into consideration the variation in both stress and strength, the stress-strength model is used… More >

  • Open Access

    ARTICLE

    Impact Damage Testing Study of Shanxi-Beijing Natural Gas Pipeline Based on Decision Tree Rotary Tiller Operation

    Liqiong Chen1, Kai Zhang1,*, Song Yang1, Duo Xu1, Weihe Huang1, Hongxuan Hu2, Haonan Liu2

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 683-706, 2024, DOI:10.32604/sdhm.2024.049536 - 19 July 2024

    Abstract The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline. Residents in the area use rototillers for planting and harvesting; however, the depth of the rototillers into the ground is greater than the depth of the pipeline, posing a significant threat to the safe operation of the pipeline. Therefore, it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe operation of pipelines. This article focuses on the Shanxi-Beijing natural gas pipeline, utilizing finite element simulation software to establish a finite More >

  • Open Access

    ARTICLE

    Direct Pointwise Comparison of FE Predictions to StereoDIC Measurements: Developments and Validation Using Double Edge-Notched Tensile Specimen

    Troy Myers1, Michael A. Sutton1,*, Hubert Schreier2, Alistair Tofts2, Sreehari Rajan Kattil1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1263-1298, 2024, DOI:10.32604/cmes.2024.048743 - 20 May 2024

    Abstract To compare finite element analysis (FEA) predictions and stereovision digital image correlation (StereoDIC) strain measurements at the same spatial positions throughout a region of interest, a field comparison procedure is developed. The procedure includes (a) conversion of the finite element data into a triangular mesh, (b) selection of a common coordinate system, (c) determination of the rigid body transformation to place both measurements and FEA data in the same system and (d) interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates. For an aluminum Al-6061 double edge More >

  • Open Access

    ARTICLE

    Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector: From Experimental to Numerical Study

    Zihan Wang1, Boshan Zhang2, Hui Wang1,*, Qing Ai1, Xingchun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1863-1888, 2024, DOI:10.32604/cmes.2024.048217 - 20 May 2024

    Abstract The application of ultra-high performance concrete (UHPC) as a covering layer for steel bridge decks has gained widespread popularity. By employing a connection without a shear connector between the steel plate and UHPC, namely, the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface, the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated. This study develops constitutive models for these two interfaces without shear connectors, based on the interfacial pull-off and push-out tests. For validation, three-point bending tests on the steel-UHPC composite More >

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640 - 16 April 2024

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities More >

  • Open Access

    ARTICLE

    Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions

    Jiaqi Wu1, Li Zhuo1,*, Jianliang Pei1, Yao Li2, Hongqiang Xie1, Jiaming Wu1, Huaizhong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 621-645, 2024, DOI:10.32604/cmes.2024.046398 - 16 April 2024

    Abstract The surrounding geological conditions and supporting structures of underground engineering are often updated during construction, and these updates require repeated numerical modeling. To improve the numerical modeling efficiency of underground engineering, a modularized and parametric modeling cloud server is developed by using Python codes. The basic framework of the cloud server is as follows: input the modeling parameters into the web platform, implement Rhino software and FLAC3D software to model and run simulations in the cloud server, and return the simulation results to the web platform. The modeling program can automatically generate instructions that can run… More >

  • Open Access

    ARTICLE

    Finite Element Simulation Analysis of a Novel 3D-FRSPA for Crawling Locomotion

    Bingzhu Wang1,*, Xiangrui Ye2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1401-1425, 2024, DOI:10.32604/cmes.2024.047364 - 29 January 2024

    Abstract A novel three-dimensional-fiber reinforced soft pneumatic actuator (3D-FRSPA) inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed. It has an omni-directional bending configuration, and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA. In this paper, the static and kinematic analysis of 3D-FRSPA are carried out in detail. The effects of fiber, pneumatic chamber and segment length, and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed, respectively. The soft mobile robot composed of More >

  • Open Access

    ARTICLE

    Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model

    Chenxi Xiu1,2,*, Xihua Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2305-2338, 2024, DOI:10.32604/cmes.2023.030194 - 15 December 2023

    Abstract This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials. By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information. The microstructures under consideration can be classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria. To investigate failure behaviors, numerical simulations of granular materials with different microstructures are conducted using… More >

  • Open Access

    ARTICLE

    Finite Element Simulation of Temperature Variations in Concrete Bridge Girders

    Hongzhi Liu1, Shasha Wu1, Yongjun Zhang2,*, Tongxu Hu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1551-1572, 2023, DOI:10.32604/fdmp.2023.024430 - 30 January 2023

    Abstract The internal temperature of cast-in-place concrete bridges undergoes strong variations during the construction as a result of environmental factors. In order to determine precisely such variations, the present study relies on the finite element method, used to model the bridge box girder section and simulate the internal temperature distribution during construction. The numerical results display good agreement with measured temperature values. It is shown that when the external temperature is higher, and the internal and external temperature difference is relatively small, the deviation of the fitting line from existing specifications (Chinese specification, American specification, New More >

Displaying 1-10 on page 1 of 26. Per Page