Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    PROCEEDINGS

    Quantitative Analysis of Energy Dissipation in Thin Film Si Anodes Upon Lithiation

    Zhuoyuan Zheng*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.010939

    Abstract Silicon (Si) anodes are promising candidates for lithium-ion batteries due to their high theoretical capacity and low operating voltage. However, the significant volume expansion that occurs during lithiation presents challenges, including material degradation and decreased cycle life. This study employs an electrochemical-mechanical-thermal coupled finite element model, supported by experimental validation, to investigate the impact of lithiation-induced deformation on the energy dissipation of Si anodes. We quantitatively investigate the effects of several key design parameters—C-rate, Si layer thickness, and lithiation depth—on energy losses resulting from various mechanisms, such as mechanical energy loss, polarization, and joule heating.… More >

  • Open Access

    ARTICLE

    Cable-Stayed Bridge Model Updating Based on Response Surface Method

    Yao Lu, Xintong Huo, Guangzhen Qu, Yanjun Li, Lei Wang*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 919-935, 2025, DOI:10.32604/sdhm.2025.062537 - 30 June 2025

    Abstract A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model (FEM) that accurately reflects the characteristics of the actual bridge structure. Firstly, an initial FEM was established by the large-scale finite element software ANSYS, and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system. The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model. Then, the second-order… More >

  • Open Access

    ARTICLE

    Simulation of Restraint Device Degradation of Long-Span Suspension Bridge Based on Finite Element Model

    Qiaowei Ye1, Ying Peng2, Zihang Wang2, Chao Deng2, Xiang Xu2, Yuan Ren2,*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 851-868, 2025, DOI:10.32604/sdhm.2025.060906 - 30 June 2025

    Abstract The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time. However, it is difficult to achieve the quantitative assessment of the performance of the restraint device through existing detection methods in actual inspections, making it difficult to obtain the impact of changes in the performance of the restraint device on the bridge structure. In this paper, a random vehicle load model is firstly established based on the WIM data of Jiangyin Bridge, and the displacement of girder end under the actual traffic flow is simulated by… More >

  • Open Access

    ARTICLE

    Study on Seismic Performance of Continuous T-Beam Bridge—Kulungou Bridge

    Jiuqing Zhou1,2,3, Daming Lin4, Leifa Li1,2,3, Guanghui Zhang1,2,3, Shumao Qiu4,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 705-729, 2025, DOI:10.32604/sdhm.2025.060298 - 03 April 2025

    Abstract The objective of this research is to assess the seismic behavior of the continuous T-beam bridge located at Kulungou in Xinjiang. In addition to traditional static and modal analyses, this study introduces a novel approach by comprehensively examining the performance of the bridge during construction stages, under ultimate load capacities and seismic load. Compliance with regulatory standards is verified by the static analysis, which also yields a thorough comprehension of stress distribution across various stages of construction. By unveiling the initial 100 vibration modes, the modal analysis has significantly enhanced our comprehension and established… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging

    Josef Izák1,*, Marek Benč2, Petr Opěla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3115-3133, 2025, DOI:10.32604/cmes.2025.059234 - 03 March 2025

    Abstract The paper deals with the FEM (Finite Element Method) simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process. Swaging was performed at a temperature of 900°C. True flow stress-strain curves were determined for 600°C–900°C and used to construct a Hensel-Spittel model for FEM simulation. The process parameters, i.e., stress, temperature, imposed strain, and force, were investigation during the rotary swaging process. Firstly, the stresses induced during rotary swaging and the resistance of the material to deformation were investigated. The amount and distribution of imposed strain in… More >

  • Open Access

    PROCEEDINGS

    Finite Element Modelling of Composite Armor Against 7.62 mm Projectile Impact

    Lei Peng1,*, Jin Zhou2, Xianfeng Zhang3, Zhongwei Guan4,5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011196

    Abstract This paper presents the numerical modelling of the ballistic response of hybrid composite structures subjected to 7.62 mm projectile impact. This study focuses on the modelling of composites made of various materials, including ceramics, Ultra-High-Molecular-Weight Polyethylene (UHMWPE), Kevlar, and compressed wood, with fabrication of hybrid laminated structures that offer promising ballistic resistance capabilities. By employing a range of constitutive models and failure criteria, the finite element model simulates the ballistic behaviors of the constituent materials, facilitating a comprehensive understanding of their performance under high-velocity impacts. The core of the study lies in the comparison between… More >

  • Open Access

    ARTICLE

    Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1,2, Huali Pan1,*, Jiangcheng Huang3, Bilal Ahmed4, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2835-2863, 2024, DOI:10.32604/cmes.2024.046993 - 11 March 2024

    Abstract The present work aims to assess earthquake-induced earth-retaining (ER) wall displacement. This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels, reinforcement concrete facing panels, and gravity-type earth-retaining walls. The finite element (FE) simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses. The seismic performance of different models, which includes reinforcement concrete panels and gravity-type and hollow precast concrete ER walls, was simulated and examined using the FE approach. It also displays comparative studies such as stress distribution, deflection of… More >

  • Open Access

    PROCEEDINGS

    Coupling Effects of the Ballast Track Infrastructure on the Dynamic Response of Structurally Independent Railway Bridges

    J.C. Sánchez‐Quesada1, A. Romero2, P. Galvín2,3, E. Moliner1, M.D. Martínez‐ Rodrigo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08691

    Abstract This paper is devoted to track-bridge interaction phenomena in railway bridges of short simply-supported (SS) spans composed by ballasted tracks. These structures may experience high vertical acceleration levels under operating conditions. In particular, the coupling effect exerted by the ballast track shared by structural parts that are theoretically independent, such as consecutive simply-supported spans or twin adjacent single-track decks, is investigated. Experimental evidence shows that in these cases there may be an important vibration transmission from the loaded to the unloaded track, and that the interlocked ballast granules couple some of the lowest modes of… More >

  • Open Access

    ARTICLE

    A Real-time Cutting Model Based on Finite Element and Order Reduction

    Xiaorui Zhang1,2,*, Wenzheng Zhang2, Wei Sun3, Hailun Wu2, Aiguo Song4, Sunil Kumar Jha5

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 1-15, 2022, DOI:10.32604/csse.2022.024950 - 23 March 2022

    Abstract Telemedicine plays an important role in Corona Virus Disease 2019 (COVID-19). The virtual surgery simulation system, as a key component in telemedicine, requires to compute in real-time. Therefore, this paper proposes a real-time cutting model based on finite element and order reduction method, which improves the computational speed and ensure the real-time performance. The proposed model uses the finite element model to construct a deformation model of the virtual lung. Meanwhile, a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation. In addition, the More >

  • Open Access

    ARTICLE

    Study on the Fire Behavior of Sandwich Wall Panels with GFRP Skins and a Wood-Web Core

    Guangjun Sun, Chuting Wang, Lu Wang*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1537-1553, 2022, DOI:10.32604/jrm.2022.018598 - 20 January 2022

    Abstract To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire, three sandwich walls were tested. One of them was used for static load test and the other two for the one-side fire tests. Besides, temperature probe points were set on the sandwich walls to obtain the temperature distribution. Meanwhile, the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent. The temperature distribution and performance reduction of materials were also considered. More >

Displaying 1-10 on page 1 of 66. Per Page