Yadong Xu1, Weixing Hong2, Mohammad Noori3,6,*, Wael A. Altabey4,*, Ahmed Silik5, Nabeel S.D. Farhan2
Structural Durability & Health Monitoring, Vol.18, No.6, pp. 763-783, 2024, DOI:10.32604/sdhm.2024.053763
- 20 September 2024
Abstract This study introduces an innovative “Big Model” strategy to enhance Bridge Structural Health Monitoring (SHM) using a Convolutional Neural Network (CNN), time-frequency analysis, and fine element analysis. Leveraging ensemble methods, collaborative learning, and distributed computing, the approach effectively manages the complexity and scale of large-scale bridge data. The CNN employs transfer learning, fine-tuning, and continuous monitoring to optimize models for adaptive and accurate structural health assessments, focusing on extracting meaningful features through time-frequency analysis. By integrating Finite Element Analysis, time-frequency analysis, and CNNs, the strategy provides a comprehensive understanding of bridge health. Utilizing diverse sensor More >