Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (635)
  • Open Access

    ARTICLE

    A Bidimensional Finite Element Study of Crack Propagation in Austempered Ductile Iron

    Gustavo von Zeska de França, Roberto Luís de Assumpção, Marco Antonio Luersen*, Carlos Henrique da Silva

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1411-1424, 2023, DOI:10.32604/cmc.2023.043811

    Abstract Austempered ductile iron (ADI) is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength, fatigue resistance, and wear resistance compared to other cast irons. The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature. As the nodules have lower stiffness than the matrix and can act as stress concentrators, they influence crack propagation. However, the crack propagation mechanism in ADI is not yet fully understood. In this study, we describe a numerical investigation of crack propagation in ADIs subjected to cyclic… More >

  • Open Access

    ARTICLE

    Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions

    Junyan Liu1, Ju Liu1, Yan Wang1, Shuang Liu1, Qiao Wang1, Yihe Du2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 205-218, 2024, DOI:10.32604/fdmp.2023.030645

    Abstract The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion. A finite element model, based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion, is used here to analyze such a risk. The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences. The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not; the same is true for the instability area. After acidizing, the… More >

  • Open Access

    ARTICLE

    A Multilevel Hierarchical Parallel Algorithm for Large-Scale Finite Element Modal Analysis

    Gaoyuan Yu1, Yunfeng Lou2, Hang Dong3, Junjie Li1, Xianlong Jin1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2795-2816, 2023, DOI:10.32604/cmc.2023.037375

    Abstract The strict and high-standard requirements for the safety and stability of major engineering systems make it a tough challenge for large-scale finite element modal analysis. At the same time, realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice. This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis. Based on two-level partitioning and four-transformation strategies, the proposed algorithm not only improves the memory access rate through… More >

  • Open Access

    ARTICLE

    Study on Flow Field Simulation at Transmission Towers in Loess Hilly Regions Based on Circular Boundary Constraints

    Yongxin Liu1, Huaiwei Cao2, Puyu Zhao2, Gang Yang1, Hua Yu1, Fuwei He3, Bo He2,*

    Energy Engineering, Vol.120, No.10, pp. 2417-2431, 2023, DOI:10.32604/ee.2023.029596

    Abstract When using high-voltage transmission lines for energy transmission in loess hilly regions, local extreme wind fields such as turbulence and high-speed cyclones occur from time to time, which can cause many kinds of mechanical and electrical failures, seriously affecting the reliable and stable energy transmission of the power grid. The existing research focuses on the wind field simulation of ideal micro-terrain and actual terrain with mostly single micro-terrain characteristics. Model boundary constraints and the influence of constrained boundaries are the main problems that need to be solved to accurately model and simulate complex flow fields. In this paper, a flow… More >

  • Open Access

    PROCEEDINGS

    Multiscale Modelling of Normal Fault Rupture-Soil-Foundation Interaction

    Lifan Chen1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09709

    Abstract A multiscale approach [1] that couples the finite-element method (FEM) and the discrete-element method (DEM) is employed to model and analyse the earthquake fault rupture-soil-foundation interaction (FR-SFI) problem. In the approach, the soil constitutive responses are obtained from DEM solutions of representative volume elements (RVEs) embedded at the FEM integration points so as to effectively bypass the phenomenological hypotheses in conventional FEM simulations. The fault rupture surfaces and shear localization patterns under normal faults with or without foundation atop have been well captured by the multiscale approach and verified with available centrifuge experimental [2] and numerical results [3]. By examining… More >

  • Open Access

    PROCEEDINGS

    Fracture of Soft Materials with Interfaces: Phase Field Modeling Based on Hybrid ES-FEM/FEM

    Shuyu Chen1,*, Jun Zeng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09672

    Abstract The engineering application prospects of soft materials in key areas such as aerospace and life science have stimulated extensive research interests in the academic community. An important topic here is to predict the service and failure behavior of such materials. Although considerable progress has been made, realworld application scenarios usually involve bi-material as well as multi-material adhesion, with cohesive interface rupture as the main failure vehicle. Inconsistent asymptotic solutions in the context of large deformations pose obstacles to the establishment of a theoretical framework for the interface fracture problem in soft materials [1]. Driven by both engineering and academia, numerical… More >

  • Open Access

    PROCEEDINGS

    A Peridynamics-Based Finite Element Method (PeriFEM) and Its Implementation in Commercial FEM Software for Brittle Fractures

    Fei Han1,*, Zhibin Li1, Jianyu Zhang1, Zhiying Liu1, Chen Yao1, Wenping Han1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09023

    Abstract The classical finite element method has been successfully applied to many engineering problems but not to cases with space discontinuity. A peridynamics-based finite element method (PeriFEM) is presented according to the principle of minimum potential energy, which enables discontinuity. First, the integral domain of peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then, spatial discretization is performed based on PEs and CEs, and the linear equations about nodal displacement are established according to the principle… More >

  • Open Access

    PROCEEDINGS

    Investigation for Fast Prediction of Residual Stresses and Deformations of Metal Additive Manufacturing

    Yabin Yang1,*, Yanfei Wang1, Quan Li2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09842

    Abstract Residual stresses and deformations are one of the challenges needs to solve for metal additive manufacturing part. Finite element method plays an important role in predicting the residual stresses and deformations to reduce the experimental costs, and provides a powerful tool for the optimization of process parameters and scanning strategies of heat source. However, the key problem in simulation is the mismatch between the melt pool and the built part in both spatial and temporal scale. This would result in large discretization in both spatial and temporal domains in the simulation, which gives rise to huge computational cost. Therefore, it… More >

  • Open Access

    ARTICLE

    Numerical Study on the Behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads

    Mahdi Hosseini1,2,*, Bingyu Jian1,2, Jian Zhang3, Haitao Li1,2,*, Rodolfo Lorenzo4, Ahmad Hosseini5, Pritam Ghosh5, Feng Shen6, Dong Yang1,2, Ziang Wang1,2

    Journal of Renewable Materials, Vol.11, No.9, pp. 3517-3531, 2023, DOI:10.32604/jrm.2023.028164

    Abstract The safety of civilian and military infrastructure is a concern due to an increase in explosive risks, which has led to a demand for high-strength civil infrastructure with improved energy absorption capacity. In this study, a Finite Element (FE) numerical model was developed to determine the effect of hybrid Fibre Reinforced Polymer (FRP) as a strengthening material on full-scale Reinforced Concrete (RC) slabs. The reinforcing materials under consideration were Carbon (CFRP) and Glass (GFRP) fibres, which were subjected to blast loads to determine the structural response. A laminated composite fabric material model was utilized to model the failure of composite,… More > Graphic Abstract

    Numerical Study on the Behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads

  • Open Access

    ARTICLE

    MHD CASSON VISCOUS DISSIPATIVE FLUID FLOW PAST A VERTICALLY INCLINED PLATE IN PRESENCE OF HEAT AND MASS TRANSFER: A FINITE ELEMENT TECHNIQUE

    R. Srinivasa Rajua,*, G. Jithender Reddyb , G. Anithaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-12, 2017, DOI:10.5098/hmt.8.27

    Abstract In the present study, consider an influence of chemical reaction on an unsteady MHD free convective, viscous dissipative Casson fluid flow over a vertically inclined plate in presence of magnetic field, heat and mass transfer. The modeling equations are converted to dimensionless equations, then solved through finite element technique. Computations were performed to analyze the behavior of fluid velocity, temperature, concentration and induced magnetic field on the inclined vertical plate with the variation of emerging physical parameters. Compared the present results with earlier reported studies for correctness and applicability of finite element technique. This model may be useful in view… More >

Displaying 21-30 on page 3 of 635. Per Page