Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (713)
  • Open Access

    ARTICLE

    Effect of Sheath Modeling on Unbonded Post-Tensioned Concrete under Blast Loads

    Hyeon-Sik Choi1, Min Kyu Kim1, Jiuk Shin2, Thomas H.-K. Kang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074029 - 29 January 2026

    Abstract Unbonded post-tensioned (PT) concrete systems are widely used in safety-critical structures, yet modeling practices for prestress implementation and tendon-concrete interaction remain inconsistent. This study investigates the effects of sheath (duct) implementation and confinement assumptions through nonlinear finite element analysis. Four modeling cases were defined, consisting of an explicit sheath without tendon-concrete confinement (S) and three no-sheath variants with different confinement levels (X, N, A). One-way beams and two-way panels were analyzed, and panel blast responses were validated against experimental results. In both beams and panels, average initial stress levels were similar across models, through local More >

  • Open Access

    ARTICLE

    An Integrated DNN-FEA Approach for Inverse Identification of Passive, Heterogeneous Material Parameters of Left Ventricular Myocardium

    Zhuofan Li1, Daniel H. Pak2, James S. Duncan2, Liang Liang3, Minliang Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073757 - 29 January 2026

    Abstract Patient-specific finite element analysis (FEA) is a promising tool for noninvasive quantification of cardiac and vascular structural mechanics in vivo. However, inverse material property identification using FEA, which requires iteratively solving nonlinear hyperelasticity problems, is computationally expensive which limits the ability to provide timely patient-specific insights to clinicians. In this study, we present an inverse material parameter identification strategy that integrates deep neural networks (DNNs) with FEA, namely inverse DNN-FEA. In this framework, a DNN encodes the spatial distribution of material parameters and effectively regularizes the inverse solution, which aims to reduce susceptibility to local optima… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074068 - 12 January 2026

    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    PROCEEDINGS

    Finite Element Simulation of Heat Dissipation Performance of Aluminum Electrolytic Capacitor

    Jinlin Peng1,*, Shen Li1,2, Yunya Liu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012647

    Abstract The working temperature of aluminum electrolytic capacitor seriously affects its life and performance, especially when the core temperature is too high, its service life will be greatly reduced. At present, the detection of the center temperature of aluminum electrolytic capacitor needs to open a hole on the top of the aluminum electrolytic capacitor, place a thermocouple and run for a long time to reach a stable state, so as to obtain a more accurate core working temperature. According to the heating mechanism of aluminum electrolytic capacitor, the ripple current and surface temperature rise of aluminum… More >

  • Open Access

    PROCEEDINGS

    Spatio-Temporal Prediction of Curing-Induced Deformation for Composite Structures Using a Hybrid CNN-LSTM and Finite Element Approach

    Xiangru He1, Ying Deng1, Zefu Li1, Jie Zhi1,2, Yonglin Chen1,2, Weidong Yang1,2,3,*, Yan Li1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012395

    Abstract Coordinated control of structural accuracy and mechanical properties is the key to composites manufacturing and the prerequisite for aerospace applications. In particular, accurate and efficient prediction of curing-induced deformation (CID) is of vital importance for fiber reinforced polymer composites quality control. In this study, we explored a novel spatio-temporal prediction model, which incorporates the finite element method with a deep learning framework to efficiently forecast the curing-induced deformation evolution of composite structures. Herein, we developed an integrated convolutional neural network (CNN) and long short-term memory (LSTM) network approach to capture both the space-distributed and time-resolved… More >

  • Open Access

    ARTICLE

    Fatigue Assessment of Large-Diameter Stiffened Tubular Welded Joints Using Effective Notch Strain and Structural Strain Approach

    Dan Jiao1,2, Yan Dong1,2,*, Hao Xie3, Yordan Garbatov4,*, Jiancheng Liu5, Hui Zhang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3197-3216, 2025, DOI:10.32604/cmes.2025.074239 - 23 December 2025

    Abstract Floating offshore wind turbine platforms typically use stiffened tubular joints at the connections between columns and braces. These joints are prone to fatigue due to complex weld geometries and the additional stress concentrations caused by the stiffeners. Existing hot-spot stress approaches may be inadequate for analysing these joints because they do not simultaneously address weld-toe and weld-root failures. To address these limitations, this study evaluates the fatigue strength of stiffened tubular joints using the effective notch strain approach and the structural strain approach. Both methods account for fatigue at the weld toe and weld root… More >

  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    A Comprehensive Numerical and Data-Driven Investigations of Nanofluid Heat Transfer Enhancement Using the Finite Element Method and Artificial Neural Network

    Adnan Ashique1,#, Khalid Masood2, Usman Afzal1, Mati Ur Rahman2, Maddina Dinesh Kumar3, Sohaib Abdal3, Nehad Ali Shah1,#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3627-3699, 2025, DOI:10.32604/cmes.2025.072523 - 23 December 2025

    Abstract This study outlines a quantitative and data-driven study of the mixed convection heat transfer processes that concern Cu-water nanofluids in a Γ-shaped enclosure with one to five rotating cylinders. The dimensionless equations of mass, momentum, and energy are solved using the finite element method as implemented in the COMSOL Multiphysics 6.3 software in different rotating Reynolds numbers and cylinder geometries. An artificial Neural Network that is trained using Bayesian Regularization on data produced by the COMSOL is utilized to estimate the average Nusselt numbers. The analysis is conducted for a wide range of rotational… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

    Shuoting Xiao1,*, Nikita Igorevich Fomin1, Kirill Anatolyevich Khvostunkov2, Chong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2821-2847, 2025, DOI:10.32604/cmes.2025.071961 - 23 December 2025

    Abstract Precast concrete structures have gained popularity due to their advantages. However, the seismic performance of their connection joints remains an area of ongoing research and improvement. Grouted Sleeve Connection (GSC) offers a solution for connecting reinforcements in precast components, but their vulnerability to internal defects, such as construction errors and material variability, can significantly impact performance. This article presents a finite element analysis (FEA) to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns. Four finite element models representing GSC with varying degrees of defects were… More > Graphic Abstract

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

Displaying 1-10 on page 1 of 713. Per Page