Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access


    Mass-Stiffness Templates for Cubic Structural Elements

    Carlos A. Felippa*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1209-1241, 2021, DOI:10.32604/cmes.2021.016803

    Abstract This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions. The method of templates is used to investigate the construction of accurate mass-stiffness pairs. This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria. One- and two-dimensional Lagrangian cubic elements with only translational degrees of freedom (DOF) carry two additional nodes on each side, herein called side nodes or SN. Although usually placed at the third-points, the SN location may be adjusted within geometric limits. The adjustment effect is studied in detail using symbolic computations for a… More >

  • Open Access


    Modelling Strategy and Parametric Study of Metal Gaskets for Automotive Applications

    Fabio Bruzzone, Cristiana Delprete, Carlo Rosso*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 51-64, 2020, DOI:10.32604/cmes.2020.011023

    Abstract This paper is focused on finite element simulation of cylinder head gaskets. Finite element codes support several methodologies, each of which has its own strengths and weaknesses. One of the key points lies in the influence of the gasket geometry on its final behaviour. Such a contribution can come from the detailed modelling of the gasket or by defining a global non-linear behaviour in which material and geometry non-linearities are summarised. Two approaches were used to simulate the gasket behaviour. The first one consists in using a 2D approach, which allows to model through-thickness non-linear behaviour of gasket. The second… More >

  • Open Access


    Three-Dimensional Isogeometric Analysis of Flexoelectricity with MATLAB Implementation

    Hamid Ghasemi1, Harold S. Park2, Xiaoying Zhuang3, 4, *, Timon Rabczuk5, 6

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1157-1179, 2020, DOI:10.32604/cmc.2020.08358

    Abstract Flexoelectricity is a general electromechanical phenomenon where the electric polarization exhibits a linear dependency to the gradient of mechanical strain and vice versa. The truncated pyramid compression test is among the most common setups to estimate the flexoelectric effect. We present a three-dimensional isogeometric formulation of flexoelectricity with its MATLAB implementation for a truncated pyramid setup. Besides educational purposes, this paper presents a precise computational model to illustrate how the localization of strain gradients around pyramidal boundary shapes contributes in generation of electrical energy. The MATLAB code is supposed to help learners in the Isogeometric Analysis and Finite Elements Methods… More >

  • Open Access


    Path Selection of a Spherical Capsule in a Branched Channel

    Zhen Wang1, Yi Sui1, Wen Wang1, Dominique Barthѐs-Biesel2, Anne-Virginie Salsac2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 42-43, 2019, DOI:10.32604/mcb.2019.07148

    Abstract Capsules are liquid droplets enclosed by a thin membrane which can resist shear deformation. They are widely found in nature (e.g. red blood cells) and in numerous applications (e.g. food, cosmetic, biomedical and pharmaceutical industries [1]), where they often flow through a complicated network of tubes or channels: this is the case for RBCs in the human circulation or for artificial capsules flowing through microfluidic devices. Central to these flows is the dynamic motion of capsules at bifurcations, in particular the question of path selection. A good understanding of this problem is indeed needed to elucidate some intriguing phenomena in… More >

  • Open Access


    A Generalized Technique for Fracture Analysis of 2-D Crack Problems Employing Singular Finite Elements

    G.S. Palani1, B. Dattaguru2, Nagesh R. Iyer1

    Structural Durability & Health Monitoring, Vol.4, No.2, pp. 77-94, 2008, DOI:10.3970/sdhm.2008.004.077

    Abstract The objective of this paper is to present a generalized technique called as, numerically integrated Modified Virtual Crack Closure Integral (NI-MVCCI) technique for computation of strain energy release rate (SERR) for 2-D crack problems employing singular finite elements. NI-MVCCI technique is generalized one and the expressions for computing SERR are independent of the finite element employed. Stress intensity factor (SIF) can be computed using the relations between SERR and SIF depending on the assumption of plane stress/strain conditions. NI-MVCCI technique has been demonstrated for 8-noded Serendipity (regular & quarter-point) and 9-noded Lagrangian (regular & quarter-point) and 12-noded (regular & singular)… More >

  • Open Access


    Modeling of a Surface Contact Stress for Spur Gear Mechanism using Static and Transient Finite Element Method

    F. R. M. Romlay1

    Structural Durability & Health Monitoring, Vol.4, No.1, pp. 19-28, 2008, DOI:10.3970/sdhm.2008.004.019

    Abstract This paper presents a surface contact static stress of a spur gear system combined with dynamic characteristic using transient Finite Element Method (FEM). Traditionally, the static stress analysis is done separately with dynamic properties due to limitation of complex equation and avoiding of error occurred. However, in this paper, static stress information is combined with the dynamic mechanism due to the time consuming during the design and analysis stage. A transient FEM analysis is carried out to formulate and solve large systems of algebraic equations in order to obtain a relationship between the contact parameter and the kinematics function. The… More >

  • Open Access


    Constitutive Equations in Finite Element Codes: The INTERATOM Model in ABAQUS

    D.K. Anding1

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 95-106, 2005, DOI:10.3970/sdhm.2005.001.095

    Abstract The paper deals with the implementation of constitutive equations for isotropic viscoplastic material behaviour into modern Finite Element codes like ABAQUS. ABAQUS provides an user interface called UMAT (USER MATERIAL) for the definition of quite general material behaviour. The user can take advantage of the complete Finite Element code from ABAQUS and has to focus only on the solution of the constitutive equations. Key problems are accuracy and stability of this local solution procedure, which comes from the numerical stiffness of the governing equations (mostly first order ordinary differential equations). The numerical stiffness does not allow to use explicit integration… More >

  • Open Access


    FE/BE Analysis of Structural Dynamics and Sound Radiation from Rolling Wheels

    L. Gaul, M. Fischer1, U. Nackenhorst2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.6, pp. 815-824, 2002, DOI:10.3970/cmes.2002.003.815

    Abstract A sequential FEM--BEM approach is employed to calculate the dynamic behavior and sound radiation of rotating wheels. The equations of motion for the wheel are developed in the frame of an Arbitrary Eulerian Lagrangian description with a time-independent formulation for steady state rolling and a spatial description of vibrations. The noise radiation caused by the vibration modes is computed by the symmetric hybrid boundary element method. More >

  • Open Access


    Structural Integrity of Functionally Graded Composite Structure using Mindlin-Type Finite Elements

    O. Oyekoya, D. Mba1, A. El-Zafrany

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 113-118, 2008, DOI:10.3970/icces.2008.006.113

    Abstract In this paper, two new Mindlin-type plate bending elements have been derived for the modelling of functionally graded plate subjected to various loading conditions such as tensile loading, in-plane bending and out-of-plane bending. The properties of the first Mindlin-type element (i.e. Average Mindlin element) are computed by using an average fibre distribution technique which averages the macro-mechanical properties over each element. The properties of the second Mindlin-type element (i.e. Smooth Mindlin element) are computed by using a smooth fibre distribution technique, which directly uses the macro-mechanical properties at Gaussian quadrature points of each element. There were two types of non-linearity… More >

  • Open Access


    A four-node hybrid assumed-strain finite element for laminated composite plates

    A. Cazzani1, E. Garusi2, A. Tralli3, S.N. Atluri4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 93-122, 2007, DOI:10.3970/icces.2007.004.093

    Abstract Fibre-reinforced plates and shells are finding an increasing interest in engineering applications. Consequently, efficient and robust computational tools are required for the analysis of such structural models. As a matter of fact, a large amount of laminate finite elements have been developed and incorporated in most commercial codes for structural analysis. In this paper a new laminate hybrid assumed-strain plate element is derived within the framework of the First-order Shear Deformation Theory (i.e. assuming that particles of the plate originally lying along a straight line which is normal to the undeformed middle surface remain aligned along a straight line during… More >

Displaying 1-10 on page 1 of 53. Per Page  

Share Link