Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    ARTICLE

    A Corrected 3D Parallel SPH Method for Simulating the Polymer Free Surface Flows Based on the XPP Model

    Tao Jiang1,2, Yuan-Sheng Tang1, Jin-Lian Ren1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.4, pp. 249-297, 2014, DOI:10.3970/cmes.2014.101.249

    Abstract In this work, a corrected three-dimensional smoothed particle hydrodynamics (CSPH-3D) method is proposed to simulate the polymer free surface flows in the filling process based on the eXtended Pom-Pom (XPP) model, and some complex deformation phenomena are also numerically predicted. The proposed CSPH-3D method is mainly motivated by a coupled concept that an extended kernel-gradient-corrected SPH (KGC-SPH) method is used in the interior of fluid flow and the traditional SPH (TSPH) method is used near the boundary domain. The present 3D particle method has higher accuracy and better stability than the TSPH-3D method. Meanwhile, a… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Non-Newtonian Fluid Mold Filling Process with Phase Change

    F. Wang1, J.L. Li1, B.X. Yang1, N.A. Hill2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 59-85, 2013, DOI:10.3970/cmes.2013.095.059

    Abstract A gas-liquid two-phase model for the simulation of a power-law fluid mold filling process with the consideration of phase change is proposed, in which the governing equations for the melt and air in the cavity, including the mass conservation, momentum conservation and energy conservation equations, are unified into one system of equation. A revised Enthalpy method, which can be used for both the melt and air in the mold cavity, is proposed to describe the phase change during the mold filling. Finite volume method on non-staggered grid is used to solve the system. The level More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Fiber Reinforced Polymer Mold Filling Process by Level Set Method

    Binxin Yang1, Jie Ouyang1, Tao Jiang1, Chuntai Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 191-222, 2010, DOI:10.3970/cmes.2010.063.191

    Abstract A gas-solid-liquid three-phase model is proposed for fiber reinforced composites mold filling process. The fluid flow is described in Eulerian coordinate while the dynamics of fibers is described in Langrangian coordinate. The interaction of fluid flow and fibers are enclosed in the model. The influence of fluid flow on fibers is described by the resultant forces imposed on fibers and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A finite volume method coupled with a level set method for viscoelastic-Newtonian fluid flow is used to More >

Displaying 1-10 on page 1 of 4. Per Page