Ala’a R. Al-Shamasneh1, Faten Khalid Karim2, Arsalan Mahmoodzadeh3,*, Abdulaziz Alghamdi4, Abdullah Alqahtani5, Shtwai Alsubai5, Abed Alanazi5
CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1573-1606, 2025, DOI:10.32604/cmes.2025.068887
- 31 August 2025
Abstract The fracture energy of fiber-reinforced concrete (FRC) affects the durability and structural performance of concrete elements. Advancements in experimental studies have yet to overcome the challenges of estimating fracture energy, as the process remains time-intensive and costly. Therefore, machine learning techniques have emerged as powerful alternatives. This study aims to investigate the performance of machine learning techniques to predict the fracture energy of FRC. For this purpose, 500 data points, including 8 input parameters that affect the fracture energy of FRC, are collected from three-point bending tests and employed to train and evaluate the machine… More >