Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    A Double-Phase-Field Model for the Cohesive Failure Modelling in Laminated Composite Materials

    Haibo Su1, Liang Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09611

    Abstract This work presents a novel double-phase-field formulation to characterize the distinct damage mechanisms and the mixed-mode cohesive fracture behaviors in fiber-reinforced composites (FRC). A hybrid phase field formulation is first proposed to derive the phase field and stress through distinct energy functionals. Then, the phase field degradation function and material damaged stiffness are properly defined based on the unique failure mechanisms, which enable the derivation of the embedded Hashin failure criteria for fiber and matrix failures in FRC respectively. Furthermore, the mixed-model cohesive law with linear softening is analytically derived within the phase field framework More >

  • Open Access

    PROCEEDINGS

    A Phase-Field Framework for Modeling Cohesive Fracture and Multiple Crack Evolutions in Fiber-Reinforced Composites

    Liang Wang1,*, Haibo Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09107

    Abstract This work proposes a novel multi-phase-field formulation to characterize the distinct damage mechanisms and quasi-brittle fracture behaviors in FRC. The phase field driving forces for each failure mechanisms are first defined based on an anisotropic energy split scheme. Then, the PF degradation functions pertinent to each failure mode are properly defined with corresponding material fracture quantities, which enables the derivation of embedded Hashin failure criteria for fiber- and matrix failures respectively. Furthermore, the material damaged stiffness is redefined within the anisotropic CDM framework, and a linear CZM is mathematically derived for each of the typical More >

Displaying 1-10 on page 1 of 2. Per Page