Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (337)
  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    ARTICLE

    A News Media Bias and Factuality Profiling Framework Assisted by Modeling Correlation

    Qi Wang1, Chenxin Li1,*, Chichen Lin2, Weijian Fan3, Shuang Feng1, Yuanzhong Wang4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3351-3369, 2024, DOI:10.32604/cmc.2024.057191 - 18 November 2024

    Abstract News media profiling is helpful in preventing the spread of fake news at the source and maintaining a good media and news ecosystem. Most previous works only extract features and evaluate media from one dimension independently, ignoring the interconnections between different aspects. This paper proposes a novel news media bias and factuality profiling framework assisted by correlated features. This framework models the relationship and interaction between media bias and factuality, utilizing this relationship to assist in the prediction of profiling results. Our approach extracts features independently while aligning and fusing them through recursive convolution and More >

  • Open Access

    ARTICLE

    A Concise and Varied Visual Features-Based Image Captioning Model with Visual Selection

    Alaa Thobhani1,*, Beiji Zou1, Xiaoyan Kui1, Amr Abdussalam2, Muhammad Asim3, Naveed Ahmed4, Mohammed Ali Alshara4,5

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2873-2894, 2024, DOI:10.32604/cmc.2024.054841 - 18 November 2024

    Abstract Image captioning has gained increasing attention in recent years. Visual characteristics found in input images play a crucial role in generating high-quality captions. Prior studies have used visual attention mechanisms to dynamically focus on localized regions of the input image, improving the effectiveness of identifying relevant image regions at each step of caption generation. However, providing image captioning models with the capability of selecting the most relevant visual features from the input image and attending to them can significantly improve the utilization of these features. Consequently, this leads to enhanced captioning network performance. In light… More >

  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    Stroke Electroencephalogram Data Synthesizing through Progressive Efficient Self-Attention Generative Adversarial Network

    Suzhe Wang*, Xueying Zhang, Fenglian Li, Zelin Wu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1177-1196, 2024, DOI:10.32604/cmc.2024.056016 - 15 October 2024

    Abstract Early and timely diagnosis of stroke is critical for effective treatment, and the electroencephalogram (EEG) offers a low-cost, non-invasive solution. However, the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning. To address this issue, our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention (PCGAN-EASA), which incrementally improves the quality of generated EEG features. This network can yield full-scale, fine-grained EEG features from the low-scale, coarse ones. Specially, to overcome the limitations of traditional generative models… More >

  • Open Access

    ARTICLE

    Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation

    Jiaqi Gao1, Kangfeng Zheng1,*, Xiujuan Wang2, Chunhua Wu1, Bin Wu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 251-270, 2024, DOI:10.32604/cmc.2024.055560 - 15 October 2024

    Abstract User identity linkage (UIL) refers to identifying user accounts belonging to the same identity across different social media platforms. Most of the current research is based on text analysis, which fails to fully explore the rich image resources generated by users, and the existing attempts touch on the multimodal domain, but still face the challenge of semantic differences between text and images. Given this, we investigate the UIL task across different social media platforms based on multimodal user-generated contents (UGCs). We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation… More >

  • Open Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024

    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

Displaying 1-10 on page 1 of 337. Per Page