Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention

    Huagang Jin, Yu Zhou*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 751-768, 2025, DOI:10.32604/cmc.2025.067867 - 29 August 2025

    Abstract Recently, ship detection technology has been applied extensively in the marine security monitoring field. However, achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales, slightly occluded objects, uneven illumination, and sea clutter. To address these issues, we propose a novel ship detection approach, i.e., the Twin Feature Pyramid Network and Data Augmentation (TFPN-DA), which mainly consists of three modules. First, to eliminate the negative effects of slightly occluded objects and uneven illumination, we propose the Spatial Attention within the Twin Feature Pyramid Network (SA-TFPN) method, which is based More >

  • Open Access

    ARTICLE

    Visual Perception and Adaptive Scene Analysis with Autonomous Panoptic Segmentation

    Darthy Rabecka V1,*, Britto Pari J1, Man-Fai Leung2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 827-853, 2025, DOI:10.32604/cmc.2025.064924 - 29 August 2025

    Abstract Techniques in deep learning have significantly boosted the accuracy and productivity of computer vision segmentation tasks. This article offers an intriguing architecture for semantic, instance, and panoptic segmentation using EfficientNet-B7 and Bidirectional Feature Pyramid Networks (Bi-FPN). When implemented in place of the EfficientNet-B5 backbone, EfficientNet-B7 strengthens the model’s feature extraction capabilities and is far more appropriate for real-world applications. By ensuring superior multi-scale feature fusion, Bi-FPN integration enhances the segmentation of complex objects across various urban environments. The design suggested is examined on rigorous datasets, encompassing Cityscapes, Common Objects in Context, KITTI Karlsruhe Institute of… More >

  • Open Access

    ARTICLE

    Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection

    Zijun Gao*, Zheyi Li, Chunqi Zhang, Ying Wang, Jingwen Su

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4353-4371, 2025, DOI:10.32604/cmc.2025.061743 - 19 May 2025

    Abstract Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks; however, their application in the actual agricultural production process is still challenging owing to the problems of inter-species similarity, multi-scale, and background complexity of pests. To address these problems, this study proposes an FD-YOLO pest target detection model. The FD-YOLO model uses a Fully Connected Feature Pyramid Network (FC-FPN) instead of a PANet in the neck, which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer, enhance large-scale target features in the… More >

  • Open Access

    ARTICLE

    YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments

    Chenghai Yu, Zhilong Lu*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3261-3280, 2024, DOI:10.32604/cmc.2024.056413 - 18 November 2024

    Abstract Railway turnouts often develop defects such as chipping, cracks, and wear during use. If not detected and addressed promptly, these defects can pose significant risks to train operation safety and passenger security. Despite advances in defect detection technologies, research specifically targeting railway turnout defects remains limited. To address this gap, we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments. To enhance detection accuracy, we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU (YOLO-VSI). The model employs a state-space model (SSM) to enhance the C2f module in the YOLOv8… More >

  • Open Access

    ARTICLE

    Two-Layer Attention Feature Pyramid Network for Small Object Detection

    Sheng Xiang1, Junhao Ma1, Qunli Shang1, Xianbao Wang1,*, Defu Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 713-731, 2024, DOI:10.32604/cmes.2024.052759 - 20 August 2024

    Abstract Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection. However, small objects are difficult to detect accurately because they contain less information. Many current methods, particularly those based on Feature Pyramid Network (FPN), address this challenge by leveraging multi-scale feature fusion. However, existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers, leading to suboptimal small object detection. To address this problem, we propose the Two-layer Attention Feature Pyramid Network (TA-FPN), featuring two key modules: the Two-layer Attention Module (TAM) and the… More > Graphic Abstract

    Two-Layer Attention Feature Pyramid Network for Small Object Detection

  • Open Access

    ARTICLE

    A Model for Helmet-Wearing Detection of Non-Motor Drivers Based on YOLOv5s

    Hongyu Lin, Feng Jiang*, Yu Jiang, Huiyin Luo, Jian Yao, Jiaxin Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5321-5336, 2023, DOI:10.32604/cmc.2023.036893 - 29 April 2023

    Abstract Detecting non-motor drivers’ helmets has significant implications for traffic control. Currently, most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of small object detection, which are unsuitable for practical application scenarios. Therefore, this paper proposes a new helmet-wearing detection algorithm based on the You Only Look Once version 5 (YOLOv5). First, the Dilated convolution In Coordinate Attention (DICA) layer is added to the backbone network. DICA combines the coordinated attention mechanism with atrous convolution to replace the original convolution layer, which can increase the perceptual field of… More >

  • Open Access

    ARTICLE

    An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints

    Jiaxiang Luo1,2, Yu Li2, Weien Zhou2, Zhiqiang Gong2, Zeyu Zhang1, Wen Yao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 823-848, 2021, DOI:10.32604/cmes.2021.016737 - 11 August 2021

    Abstract Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years. However, the loss function of the above method is mainly based on pixel-wise errors from the image perspective, which cannot embed the physical knowledge of topology optimization. Therefore, this paper presents an improved deep learning model to alleviate the above difficulty effectively. The feature pyramid network (FPN), a kind of deep learning model, is trained to learn the inherent physical law of topology optimization itself, of which the loss function is composed of pixel-wise errors and physical More >

Displaying 1-10 on page 1 of 8. Per Page