Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (227)
  • Open Access

    ARTICLE

    Anatomical Region Detection Scheme Using Deep Learning Model in Video Capsule Endoscope

    S. Rajagopal1,*, T. Ramakrishnan2, S. Vairaprakash3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1927-1941, 2022, DOI:10.32604/iasc.2022.024998 - 25 May 2022

    Abstract Video capsule endoscope (VCE) is a developing methodology, which permits analysis of the full gastrointestinal (GI) tract with minimum intrusion. Although VCE permits for profound analysis, evaluating and analyzing for long hours of images is tiresome and cost-inefficient. To achieve automatic VCE-dependent GI disease detection, identifying the anatomical region shall permit for a more concentrated examination and abnormality identification in each area of the GI tract. Hence we proposed a hybrid (Long-short term memory-Visual Geometry Group network) LSTM-VGGNET based classification for the identification of the anatomical area inside the gastrointestinal tract caught by VCE images.… More >

  • Open Access

    ARTICLE

    Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM

    S. Hariprasad1,*, T. Deepa1, N. Bharathiraja2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1425-1440, 2022, DOI:10.32604/iasc.2022.022856 - 25 May 2022

    Abstract The Internet of Things (IoT) is a global information and communication technology which aims to connect any type of device to the internet at any time and in any location. Nowadays billions of IoT devices are connected to the world, this leads to easily cause vulnerability to IoT devices. The increasing of users in different IoT-related applications leads to more data attacks is happening in the IoT networks after the fog layer. To detect and reduce the attacks the deep learning model is used. In this article, a hybrid sample selected recurrent neural network-extreme learning… More >

  • Open Access

    ARTICLE

    Optimal Fusion-Based Handcrafted with Deep Features for Brain Cancer Classification

    Mahmoud Ragab1,2,3,*, Sultanah M. Alshammari4, Amer H. Asseri2,5, Waleed K. Almutiry6

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 801-815, 2022, DOI:10.32604/cmc.2022.029140 - 18 May 2022

    Abstract Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography (CT), or magnetic resonance imaging (MRI). An automated brain cancer classification using computer aided diagnosis (CAD) models can be designed to assist radiologists. With the recent advancement in computer vision (CV) and deep learning (DL) models, it is possible to automatically detect the tumor from images using a computer-aided design. This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features (HGSO-FHDF) technique for brain cancer classification. The proposed HGSO-FHDF technique aims… More >

  • Open Access

    ARTICLE

    Feature Extraction and Classification of Plant Leaf Diseases Using Deep Learning Techniques

    K. Anitha1, S. Srinivasan2,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 233-247, 2022, DOI:10.32604/cmc.2022.026542 - 18 May 2022

    Abstract In India’s economy, agriculture has been the most significant contributor. Despite the fact that agriculture’s contribution is decreasing as the world’s population grows, it continues to be the most important source of employment with a little margin of difference. As a result, there is a pressing need to pick up the pace in order to achieve competitive, productive, diverse, and long-term agriculture. Plant disease misinterpretations can result in the incorrect application of pesticides, causing crop harm. As a result, early detection of infections is critical as well as cost-effective for farmers. To diagnose the disease… More >

  • Open Access

    ARTICLE

    Efficient Feature Selection and Machine Learning Based ADHD Detection Using EEG Signal

    Md. Maniruzzaman1, Jungpil Shin1,*, Md. Al Mehedi Hasan1, Akira Yasumura2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5179-5195, 2022, DOI:10.32604/cmc.2022.028339 - 21 April 2022

    Abstract Attention deficit hyperactivity disorder (ADHD) is one of the most common psychiatric and neurobehavioral disorders in children, affecting 11% of children worldwide. This study aimed to propose a machine learning (ML)-based algorithm for discriminating ADHD from healthy children using their electroencephalography (EEG) signals. The study included 61 children with ADHD and 60 healthy children aged 7–12 years. Different morphological and time-domain features were extracted from EEG signals. The t-test (p-value < 0.05) and least absolute shrinkage and selection operator (LASSO) were used to select potential features of children with ADHD and enhance the classification accuracy. The… More >

  • Open Access

    ARTICLE

    Improved Lightweight Deep Learning Algorithm in 3D Reconstruction

    Tao Zhang1,*, Yi Cao2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5315-5325, 2022, DOI:10.32604/cmc.2022.027083 - 21 April 2022

    Abstract The three-dimensional (3D) reconstruction technology based on structured light has been widely used in the field of industrial measurement due to its many advantages. Aiming at the problems of high mismatch rate and poor real-time performance caused by factors such as system jitter and noise, a lightweight stripe image feature extraction algorithm based on You Only Look Once v4 (YOLOv4) network is proposed. First, Mobilenetv3 is used as the backbone network to effectively extract features, and then the Mish activation function and Complete Intersection over Union (CIoU) loss function are used to calculate the improved More >

  • Open Access

    ARTICLE

    Research on Multi-View Image Reconstruction Technology Based on Auto-Encoding Learning

    Tao Zhang1, Shaokui Gu1, Jinxing Niu1,*, Yi Cao2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4603-4614, 2022, DOI:10.32604/cmc.2022.027079 - 21 April 2022

    Abstract Traditional three-dimensional (3D) image reconstruction method, which highly dependent on the environment and has poor reconstruction effect, is easy to lead to mismatch and poor real-time performance. The accuracy of feature extraction from multiple images affects the reliability and real-time performance of 3D reconstruction technology. To solve the problem, a multi-view image 3D reconstruction algorithm based on self-encoding convolutional neural network is proposed in this paper. The algorithm first extracts the feature information of multiple two-dimensional (2D) images based on scale and rotation invariance parameters of Scale-invariant feature transform (SIFT) operator. Secondly, self-encoding learning neural… More >

  • Open Access

    ARTICLE

    Intelligent Sign Language Recognition System for E-Learning Context

    Muhammad Jamil Hussain1, Ahmad Shaoor1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5327-5343, 2022, DOI:10.32604/cmc.2022.025953 - 21 April 2022

    Abstract In this research work, an efficient sign language recognition tool for e-learning has been proposed with a new type of feature set based on angle and lines. This feature set has the ability to increase the overall performance of machine learning algorithms in an efficient way. The hand gesture recognition based on these features has been implemented for usage in real-time. The feature set used hand landmarks, which were generated using media-pipe (MediaPipe) and open computer vision (openCV) on each frame of the incoming video. The overall algorithm has been tested on two well-known ASL-alphabet More >

  • Open Access

    ARTICLE

    Pattern Recognition of Modulation Signal Classification Using Deep Neural Networks

    D. Venugopal1, V. Mohan2, S. Ramesh3, S. Janupriya4, Sangsoon Lim5,*, Seifedine Kadry6

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 545-558, 2022, DOI:10.32604/csse.2022.024239 - 20 April 2022

    Abstract In recent times, pattern recognition of communication modulation signals has gained significant attention in several application areas such as military, civilian field, etc. It becomes essential to design a safe and robust feature extraction (FE) approach to efficiently identify the various signal modulation types in a complex platform. Several works have derived new techniques to extract the feature parameters namely instant features, fractal features, and so on. In addition, machine learning (ML) and deep learning (DL) approaches can be commonly employed for modulation signal classification. In this view, this paper designs pattern recognition of communication… More >

  • Open Access

    ARTICLE

    An Efficient Video Inpainting Approach Using Deep Belief Network

    M. Nuthal Srinivasan1,*, M. Chinnadurai2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 515-529, 2022, DOI:10.32604/csse.2022.023109 - 20 April 2022

    Abstract The video inpainting process helps in several video editing and restoration processes like unwanted object removal, scratch or damage rebuilding, and retargeting. It intends to fill spatio-temporal holes with reasonable content in the video. Inspite of the recent advancements of deep learning for image inpainting, it is challenging to outspread the techniques into the videos owing to the extra time dimensions. In this view, this paper presents an efficient video inpainting approach using beetle antenna search with deep belief network (VIA-BASDBN). The proposed VIA-BASDBN technique initially converts the videos into a set of frames and… More >

Displaying 131-140 on page 14 of 227. Per Page