Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3709-3724, 2023, DOI:10.32604/iasc.2023.036856
Abstract The increasing number of security holes in the Internet of Things (IoT) networks creates a question about the reliability of existing network intrusion detection systems. This problem has led to the developing of a research area focused on improving network-based intrusion detection system (NIDS) technologies. According to the analysis of different businesses, most researchers focus on improving the classification results of NIDS datasets by combining machine learning and feature reduction techniques. However, these techniques are not suitable for every type of network. In light of this, whether the optimal algorithm and feature reduction techniques can be generalized across various datasets… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3675-3690, 2023, DOI:10.32604/iasc.2023.035817
Abstract Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data. But, the traditional decision forest (DF) algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively. In this work, we propose a bootstrap decision forest using penalizing attributes (BFPA) algorithm to predict heart disease with higher accuracy. This work integrates a significance-based attribute selection (SAS) algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness. The proposed SAS algorithm is used to determine the correlation among attributes and to select the optimum… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791
Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model, it is important to elaborately… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3007-3028, 2023, DOI:10.32604/iasc.2023.032580
Abstract This study offers a framework for a breast cancer computer-aided treatment prediction (CATP) system. The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagnosis and frequent screening. Mammography has been the most utilized breast imaging technique to date. Radiologists have begun to use computer-aided detection and diagnosis (CAD) systems to improve the accuracy of breast cancer diagnosis by minimizing human errors. Despite the progress of artificial intelligence (AI) in the medical field, this study indicates that systems that can anticipate a treatment plan once a patient has… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 2509-2525, 2023, DOI:10.32604/csse.2023.036119
Abstract With the growth of the discipline of digital communication, the topic has acquired more attention in the cybersecurity medium. The Intrusion Detection (ID) system monitors network traffic to detect malicious activities. The paper introduces a novel Feature Selection (FS) approach for ID. Reptile Search Algorithm (RSA)—is a new optimization algorithm; in this method, each agent searches a new region according to the position of the host, which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate. To overcome these problems, this study introduces an improved RSA approach by integrating Cauchy Mutation (CM) into the… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 1293-1310, 2023, DOI:10.32604/csse.2023.035589
Abstract The Internet of Things (IoT) has gained more popularity in research because of its large-scale challenges and implementation. But security was the main concern when witnessing the fast development in its applications and size. It was a dreary task to independently set security systems in every IoT gadget and upgrade them according to the newer threats. Additionally, machine learning (ML) techniques optimally use a colossal volume of data generated by IoT devices. Deep Learning (DL) related systems were modelled for attack detection in IoT. But the current security systems address restricted attacks and can be utilized outdated datasets for evaluations.… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 1471-1485, 2023, DOI:10.32604/csse.2023.034137
Abstract The Internet of Things (IoT) environment plays a crucial role in the design of smart environments. Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments. Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications. Intrusion detection systems (IDS) can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities. This paper introduces a modified garden balsan optimization-based machine learning model for intrusion detection (MGBO-MLID) in the IoT cloud environment. The presented MGBO-MLID technique focuses on the identification and classification of intrusions in the… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 99-115, 2023, DOI:10.32604/cmc.2023.034752
Abstract The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so far by conventional threat detection… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1371-1389, 2023, DOI:10.32604/cmc.2023.033509
Abstract Various feature selection algorithms are usually employed to improve classification models’ overall performance. Optimization algorithms typically accompany such algorithms to select the optimal set of features. Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics. The present paper presents two Stages of Local Search models for feature selection based on WOA (Whale Optimization Algorithm) and Great Deluge (GD). GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search. Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1883-1900, 2023, DOI:10.32604/cmc.2023.031723
Abstract The rapid population growth results in a crucial problem in the early detection of diseases in medical research. Among all the cancers unveiled, breast cancer is considered the second most severe cancer. Consequently, an exponential rising in death cases incurred by breast cancer is expected due to the rapid population growth and the lack of resources required for performing medical diagnoses. Utilizing recent advances in machine learning could help medical staff in diagnosing diseases as they offer effective, reliable, and rapid responses, which could help in decreasing the death risk. In this paper, we propose a new algorithm for feature… More >