Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Importance-Weighted Transfer Learning for Fault Classification under Covariate Shift

    Yi Pan1, Lei Xie2,*, Hongye Su2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 683-696, 2024, DOI:10.32604/iasc.2023.038543 - 06 September 2024

    Abstract In the process of fault detection and classification, the operation mode usually drifts over time, which brings great challenges to the algorithms. Because traditional machine learning based fault classification cannot dynamically update the trained model according to the probability distribution of the testing dataset, the accuracy of these traditional methods usually drops significantly in the case of covariate shift. In this paper, an importance-weighted transfer learning method is proposed for fault classification in the nonlinear multi-mode industrial process. It effectively alters the drift between the training and testing dataset. Firstly, the mutual information method is… More >

  • Open Access

    ARTICLE

    An Efficient IIoT-Based Smart Sensor Node for Predictive Maintenance of Induction Motors

    Majida Kazmi1,*, Maria Tabasum Shoaib1,2, Arshad Aziz3, Hashim Raza Khan1,2, Saad Ahmed Qazi1,2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 255-272, 2023, DOI:10.32604/csse.2023.038464 - 26 May 2023

    Abstract Predictive maintenance is a vital aspect of the industrial sector, and the use of Industrial Internet of Things (IIoT) sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditions. An integrated approach for acquiring, processing, and wirelessly transmitting a large amount of data in predictive maintenance applications remains a significant challenge. This study presents an IIoT-based sensor node for industrial motors. The sensor node is designed to acquire vibration data on the radial and axial axes of the motor and utilizes a hybrid approach for efficient data processing via edge and… More >

  • Open Access

    ARTICLE

    Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems

    Nebras M. Sobahi1,*, Ahteshamul Haque2, V S Bharath Kurukuru2, Md. Mottahir Alam1, Asif Irshad Khan3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5757-5776, 2023, DOI:10.32604/cmc.2022.028340 - 28 December 2022

    Abstract Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic (PV) systems. In light of this requirement, this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment. To achieve this, different types of faults in grid-connected PV systems (GCPVs) and their impact on the energy loss associated with the electrical network are analyzed. A data-driven approach using neural networks (NNs) is proposed to achieve root cause analysis and localize the fault to the… More >

  • Open Access

    ARTICLE

    Fault Pattern Diagnosis and Classification in Sensor Nodes Using Fall Curve

    Mudita Uppal1, Deepali Gupta1, Divya Anand2, Fahd S. Alharithi3, Jasem Almotiri3, Arturo Mansilla4,5, Dinesh Singh6, Nitin Goyal1,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1799-1814, 2022, DOI:10.32604/cmc.2022.025330 - 24 February 2022

    Abstract The rapid expansion of Internet of Things (IoT) devices deploys various sensors in different applications like homes, cities and offices. IoT applications depend upon the accuracy of sensor data. So, it is necessary to predict faults in the sensor and isolate their cause. A novel primitive technique named fall curve is presented in this paper which characterizes sensor faults. This technique identifies the faulty sensor and determines the correct working of the sensor. Different sources of sensor faults are explained in detail whereas various faults that occurred in sensor nodes available in IoT devices are… More >

  • Open Access

    ARTICLE

    Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms

    Gopi Krishna Durbhaka1, Barani Selvaraj1, Mamta Mittal2, Tanzila Saba3,*, Amjad Rehman3, Lalit Mohan Goyal4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2041-2059, 2021, DOI:10.32604/cmc.2020.013131 - 26 November 2020

    Abstract Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have More >

  • Open Access

    ARTICLE

    Sound Signal Based Fault Classification System in Motorcycles Using Hybrid Feature Sets and Extreme Learning Machine Classifiers

    T. Jayasree1,*, R. Prem Ananth2

    Sound & Vibration, Vol.54, No.1, pp. 57-74, 2020, DOI:10.32604/sv.2020.08573 - 01 March 2020

    Abstract Vehicles generate dissimilar sound patterns under different working environments. These generated sound patterns signify the condition of the engines, which in turn is used for diagnosing various faults. In this paper, the sound signals produced by motorcycles are analyzed to locate various faults. The important attributes are extracted from the generated sound signals based on time, frequency and wavelet domains which clearly describe the statistical behavior of the signals. Further, various types of faults are classified using the Extreme Learning Machine (ELM) classifier from the extracted features. Moreover, the improved classification performance is obtained by More >

Displaying 1-10 on page 1 of 6. Per Page