Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (217)
  • Open Access

    EDITORIAL

    Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects

    Bo Yang1,*, Yucun Qian1, Jianzhong Xu2, Yaxing Ren3, Yixuan Chen4

    Energy Engineering, Vol.121, No.8, pp. 2085-2091, 2024, DOI:10.32604/ee.2024.050083

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network

    Jingting Mei, Yang Yang*, Zhipeng Gao, Lanlan Rui, Yijing Lin

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4883-4904, 2024, DOI:10.32604/cmc.2024.051860

    Abstract Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management. Considering the unique characteristics of edge networks, such as limited resources, complex network faults, and the need for high real-time performance, enhancing and optimizing existing network fault diagnosis methods is necessary. Therefore, this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network (LSNN). Firstly, we use the Izhikevich neurons model to replace the Leaky Integrate and Fire (LIF) neurons model in the LSNN model. Izhikevich… More >

  • Open Access

    ARTICLE

    Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy

    Lili Bai1,*, Wenhui Li1, He Ren1,2, Feng Li1, Tao Yan1, Lirong Chen3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4513-4531, 2024, DOI:10.32604/cmc.2024.051348

    Abstract Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery, where weak fault characteristic signals hinder accurate fault state representation, we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform (FAWT) with Nonlinear Quantum Permutation Entropy. FAWT, leveraging fractional orders and arbitrary scaling and translation factors, exhibits superior translational invariance and adjustable fundamental oscillatory characteristics. This flexibility enables FAWT to provide well-suited wavelet shapes, effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults. In our approach,… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM

    Chunming Wu1, Shupeng Zheng2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4395-4411, 2024, DOI:10.32604/cmc.2024.049665

    Abstract Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature information of various sizes, the model creates a multi-scale feature extraction module using the convolutional neural network (CNN) learning process.… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine

    Chen Chen1,2, Zhongwei Xu1, Meng Mei1,*, Kai Huang3, Siu Ming Lo2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4533-4549, 2024, DOI:10.32604/cmc.2024.048995

    Abstract Railway switch machine is essential for maintaining the safety and punctuality of train operations. A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein. Unlike existing methods, this approach takes into account the spatial information of the time series monitoring data, aligning with the domain expertise of on-site manual monitoring. Besides, a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information. First, one-dimensional signal data is preprocessed and transformed into two-dimensional images. Afterward, the fusion feature tensor is created by More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Energy Storage Unit of Circuit Breakers Based on EWT-ISSA-BP

    Tengfei Li1, Wenhui Zhang1, Ke Mi1, Qingming Lin1, Shuangwei Zhao2,*, Jiayi Song2

    Energy Engineering, Vol.121, No.7, pp. 1991-2007, 2024, DOI:10.32604/ee.2024.049460

    Abstract Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers (LVCBs). A fault diagnosis algorithm based on an improved Sparrow Search Algorithm (ISSA) optimized Backpropagation Neural Network (BPNN) is proposed to improve the operational safety of LVCB. Taking the 1.5kV/4000A/75kA LVCB as an example. According to the current operating characteristics of the energy storage motor, fault characteristics are extracted based on Empirical Wavelet Transform (EWT). Traditional BPNN has problems such as difficulty adjusting network weights and thresholds, being sensitive to initial weights, and quickly falling into More >

  • Open Access

    ARTICLE

    Arc Grounding Fault Identification Using Integrated Characteristics in the Power Grid

    Penghui Liu1,2,*, Yaning Zhang1, Yuxing Dai2, Yanzhou Sun1,3

    Energy Engineering, Vol.121, No.7, pp. 1883-1901, 2024, DOI:10.32604/ee.2024.049318

    Abstract Arc grounding faults occur frequently in the power grid with small resistance grounding neutral points. The existing arc fault identification technology only uses the fault line signal characteristics to set the identification index, which leads to detection failure when the arc zero-off characteristic is short. To solve this problem, this paper presents an arc fault identification method by utilizing integrated signal characteristics of both the fault line and sound lines. Firstly, the waveform characteristics of the fault line and sound lines under an arc grounding fault are studied. After that, the convex hull, gradient product,… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

    Guangfei Jia*, Yanchao Meng, Zhiying Qin

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 445-463, 2024, DOI:10.32604/sdhm.2024.049298

    Abstract The vibration signals of rolling bearings exhibit nonlinear and non-stationary characteristics under the influence of noise. In intelligent fault diagnosis, unprocessed signals will lead to weak fault characteristics and low diagnostic accuracy. To solve the above problem, a fault diagnosis method based on parameter optimization feature mode decomposition and improved deep belief networks is proposed. The feature mode decomposition is used to decompose the vibration signals. The parameter adaptation of feature mode decomposition is implemented by improved whale optimization algorithm including Levy flight strategy and adaptive weight. The selection of activation function and parameters is More > Graphic Abstract

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

  • Open Access

    ARTICLE

    Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm

    Huanan Yu, Hangyu Li, He Wang, Shiqiang Li*

    Energy Engineering, Vol.121, No.6, pp. 1535-1555, 2024, DOI:10.32604/ee.2024.046936

    Abstract The escalating deployment of distributed power sources and random loads in DC distribution networks has amplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimal configuration of measurement points, this paper presents an optimal configuration scheme for fault location measurement points in DC distribution networks based on an improved particle swarm optimization algorithm. Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing. The model aims to achieve the minimum number of measurement points while attaining the best compressive sensing reconstruction effect. It incorporates constraints from… More >

Displaying 1-10 on page 1 of 217. Per Page