Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection

    Jyun-Guo Wang*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1149-1170, 2024, DOI:10.32604/csse.2024.052931 - 13 September 2024

    Abstract In many Eastern and Western countries, falling birth rates have led to the gradual aging of society. Older adults are often left alone at home or live in a long-term care center, which results in them being susceptible to unsafe events (such as falls) that can have disastrous consequences. However, automatically detecting falls from video data is challenging, and automatic fall detection methods usually require large volumes of training data, which can be difficult to acquire. To address this problem, video kinematic data can be used as training data, thereby avoiding the requirement of creating… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008 - 30 January 2024

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance… More >

  • Open Access

    ARTICLE

    Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System

    Sangeeta Yadav1, Preeti Gulia1,*, Nasib Singh Gill1,*, Piyush Kumar Shukla2, Arfat Ahmad Khan3, Sultan Alharby4, Ahmed Alhussen4, Mohd Anul Haq5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1253-1274, 2024, DOI:10.32604/cmc.2023.042869 - 30 January 2024

    Abstract Inpatient falls from beds in hospitals are a common problem. Such falls may result in severe injuries. This problem can be addressed by continuous monitoring of patients using cameras. Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient. Along with fall detection, monitoring of different activities of the patients is also of significant concern to assess the improvement in their health. High computation-intensive models are required to monitor every action of the patient precisely. This requirement limits the applicability of such networks. Hence, to keep the… More >

  • Open Access

    ARTICLE

    Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls

    Xiaorui Zhang1,2,3,*, Qijian Xie1, Wei Sun3,4, Yongjun Ren1,2,3, Mithun Mukherjee5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 47-61, 2023, DOI:10.32604/cmc.2023.042561 - 31 October 2023

    Abstract Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input… More >

  • Open Access

    ARTICLE

    Developed Fall Detection of Elderly Patients in Internet of Healthcare Things

    Omar Reyad1,2, Hazem Ibrahim Shehata1,3, Mohamed Esmail Karar1,4,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1689-1700, 2023, DOI:10.32604/cmc.2023.039084 - 30 August 2023

    Abstract Falling is among the most harmful events older adults may encounter. With the continuous growth of the aging population in many societies, developing effective fall detection mechanisms empowered by machine learning technologies and easily integrable with existing healthcare systems becomes essential. This paper presents a new healthcare Internet of Health Things (IoHT) architecture built around an ensemble machine learning-based fall detection system (FDS) for older people. Compared to deep neural networks, the ensemble multi-stage random forest model allows the extraction of an optimal subset of fall detection features with minimal hyperparameters. The number of cascaded… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People

    Majdy M. Eltahir1, Adil Yousif2, Fadwa Alrowais3, Mohamed K. Nour4, Radwa Marzouk5, Hatim Dafaalla6, Asma Abbas Hassan Elnour6, Amira Sayed A. Aziz7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3239-3255, 2023, DOI:10.32604/cmc.2023.034037 - 31 March 2023

    Abstract The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection. This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes. These sensors produce a huge volume of physical activity data that necessitates real-time recognition, especially during emergencies. Falling is one of the most important problems confronted by older people and people with movement disabilities. Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people. But, the costs incurred upon… More >

  • Open Access

    ARTICLE

    Pre-Impact and Impact Fall Detection Based on a Multimodal Sensor Using a Deep Residual Network

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3371-3385, 2023, DOI:10.32604/iasc.2023.036551 - 15 March 2023

    Abstract Falls are the contributing factor to both fatal and nonfatal injuries in the elderly. Therefore, pre-impact fall detection, which identifies a fall before the body collides with the floor, would be essential. Recently, researchers have turned their attention from post-impact fall detection to pre-impact fall detection. Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach, although the threshold value would be difficult to accurately determine in threshold-based methods. Moreover, while additional features could sometimes assist in categorizing falls and non-falls more precisely, the estimated determination of the significant features would be… More >

  • Open Access

    ARTICLE

    Automated Disabled People Fall Detection Using Cuckoo Search with Mobile Networks

    Mesfer Al Duhayyim*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2473-2489, 2023, DOI:10.32604/iasc.2023.033585 - 15 March 2023

    Abstract Falls are the most common concern among older adults or disabled people who use scooters and wheelchairs. The early detection of disabled persons’ falls is required to increase the living rate of an individual or provide support to them whenever required. In recent times, the arrival of the Internet of Things (IoT), smartphones, Artificial Intelligence (AI), wearables and so on make it easy to design fall detection mechanisms for smart homecare. The current study develops an Automated Disabled People Fall Detection using Cuckoo Search Optimization with Mobile Networks (ADPFD-CSOMN) model. The proposed model’s major aim… More >

  • Open Access

    ARTICLE

    Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data

    Madhuri Agrawal*, Shikha Agrawal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493 - 15 March 2023

    Abstract

    Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the

    More >

  • Open Access

    ARTICLE

    Teamwork Optimization with Deep Learning Based Fall Detection for IoT-Enabled Smart Healthcare System

    Sarah B. Basahel1, Saleh Bajaba2, Mohammad Yamin3, Sachi Nandan Mohanty4, E. Laxmi Lydia5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1353-1369, 2023, DOI:10.32604/cmc.2023.036453 - 06 February 2023

    Abstract The current advancement in cloud computing, Artificial Intelligence (AI), and the Internet of Things (IoT) transformed the traditional healthcare system into smart healthcare. Healthcare services could be enhanced by incorporating key techniques like AI and IoT. The convergence of AI and IoT provides distinct opportunities in the medical field. Fall is regarded as a primary cause of death or post-traumatic complication for the ageing population. Therefore, earlier detection of older person falls in smart homes is required to improve the survival rate of an individual or provide the necessary support. Lately, the emergence of IoT,… More >

Displaying 1-10 on page 1 of 17. Per Page