Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Leveraging Pre-Trained Word Embedding Models for Fake Review Identification

    Glody Muka1,*, Patrick Mukala1,2,*

    Journal on Artificial Intelligence, Vol.6, pp. 211-223, 2024, DOI:10.32604/jai.2024.049685 - 07 August 2024

    Abstract Reviews have a significant impact on online businesses. Nowadays, online consumers rely heavily on other people's reviews before purchasing a product, instead of looking at the product description. With the emergence of technology, malicious online actors are using techniques such as Natural Language Processing (NLP) and others to generate a large number of fake reviews to destroy their competitors’ markets. To remedy this situation, several researches have been conducted in the last few years. Most of them have applied NLP techniques to preprocess the text before building Machine Learning (ML) or Deep Learning (DL) models… More >

  • Open Access

    ARTICLE

    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    Asma Hassan Alshehri*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838 - 27 February 2024

    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, More >

  • Open Access

    ARTICLE

    Data Analytics for the Identification of Fake Reviews Using Supervised Learning

    Saleh Nagi Alsubari1, Sachin N. Deshmukh1, Ahmed Abdullah Alqarni2, Nizar Alsharif3, Theyazn H. H. Aldhyani4,*, Fawaz Waselallah Alsaade5, Osamah I. Khalaf6

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3189-3204, 2022, DOI:10.32604/cmc.2022.019625 - 27 September 2021

    Abstract Fake reviews, also known as deceptive opinions, are used to mislead people and have gained more importance recently. This is due to the rapid increase in online marketing transactions, such as selling and purchasing. E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased. New customers usually go through the posted reviews or comments on the website before making a purchase decision. However, the current challenge is how new individuals can distinguish truthful reviews from fake ones, which later deceive customers, inflict losses, and tarnish the reputation… More >

Displaying 1-10 on page 1 of 3. Per Page