Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Robust Method of Bipolar Mental Illness Detection from Facial Micro Expressions Using Machine Learning Methods

    Ghulam Gilanie1,*, Sana Cheema1, Akkasha Latif1, Anum Saher1, Muhammad Ahsan1, Hafeez Ullah2, Diya Oommen3

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 57-71, 2024, DOI:10.32604/iasc.2024.041535 - 29 March 2024

    Abstract Bipolar disorder is a serious mental condition that may be caused by any kind of stress or emotional upset experienced by the patient. It affects a large percentage of people globally, who fluctuate between depression and mania, or vice versa. A pleasant or unpleasant mood is more than a reflection of a state of mind. Normally, it is a difficult task to analyze through physical examination due to a large patient-psychiatrist ratio, so automated procedures are the best options to diagnose and verify the severity of bipolar. In this research work, facial micro-expressions have been… More >

  • Open Access

    ARTICLE

    An Automated and Real-time Approach of Depression Detection from Facial Micro-expressions

    Ghulam Gilanie1, Mahmood ul Hassan2, Mutyyba Asghar1, Ali Mustafa Qamar3,*, Hafeez Ullah4, Rehan Ullah Khan5, Nida Aslam6, Irfan Ullah Khan6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2513-2528, 2022, DOI:10.32604/cmc.2022.028229 - 16 June 2022

    Abstract Depression is a mental psychological disorder that may cause a physical disorder or lead to death. It is highly impactful on the social-economical life of a person; therefore, its effective and timely detection is needful. Despite speech and gait, facial expressions have valuable clues to depression. This study proposes a depression detection system based on facial expression analysis. Facial features have been used for depression detection using Support Vector Machine (SVM) and Convolutional Neural Network (CNN). We extracted micro-expressions using Facial Action Coding System (FACS) as Action Units (AUs) correlated with the sad, disgust, and More >

Displaying 1-10 on page 1 of 2. Per Page