Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Acknowledge of Emotions for Improving Student-Robot Interaction

    Hasan Han1, Oguzcan Karadeniz1, Tugba Dalyan2,*, Elena Battini Sonmez2, Baykal Sarioglu1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1209-1224, 2023, DOI:10.32604/iasc.2023.030674

    Abstract Robot companions will soon be part of our everyday life and students in the engineering faculty must be trained to design, build, and interact with them. The two affordable robots presented in this paper have been designed and constructed by two undergraduate students; one artificial agent is based on the Nvidia Jetson Nano development board and the other one on a remote computer system. Moreover, the robots have been refined with an empathetic system, to make them more user-friendly. Since automatic facial expression recognition skills is a necessary pre-processing step for acknowledging emotions, this paper tested different variations of Convolutional… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics with Deep Learning Enabled Automated Deception Detection and Classification of Facial Expressions

    Haya Alaskar*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5433-5449, 2023, DOI:10.32604/cmc.2023.035266

    Abstract Automatic deception recognition has received considerable attention from the machine learning community due to recent research on its vast application to social media, interviews, law enforcement, and the military. Video analysis-based techniques for automated deception detection have received increasing interest. This study develops a new self-adaptive population-based firefly algorithm with a deep learning-enabled automated deception detection (SAPFF-DLADD) model for analyzing facial cues. Initially, the input video is separated into a set of video frames. Then, the SAPFF-DLADD model applies the MobileNet-based feature extractor to produce a useful set of features. The long short-term memory (LSTM) model is exploited for deception… More >

  • Open Access

    ARTICLE

    Earthworm Optimization with Improved SqueezeNet Enabled Facial Expression Recognition Model

    N. Sharmili1, Saud Yonbawi2, Sultan Alahmari3, E. Laxmi Lydia4, Mohamad Khairi Ishak5, Hend Khalid Alkahtani6,*, Ayman Aljarbouh7, Samih M. Mostafa8

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2247-2262, 2023, DOI:10.32604/csse.2023.036377

    Abstract Facial expression recognition (FER) remains a hot research area among computer vision researchers and still becomes a challenge because of high intra-class variations. Conventional techniques for this problem depend on hand-crafted features, namely, LBP, SIFT, and HOG, along with that a classifier trained on a database of videos or images. Many execute perform well on image datasets captured in a controlled condition; however not perform well in the more challenging dataset, which has partial faces and image variation. Recently, many studies presented an endwise structure for facial expression recognition by utilizing DL methods. Therefore, this study develops an earthworm optimization… More >

  • Open Access

    ARTICLE

    MDNN: Predicting Student Engagement via Gaze Direction and Facial Expression in Collaborative Learning

    Yi Chen1,*, Jin Zhou1, Qianting Gao2, Jing Gao1, Wei Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 381-401, 2023, DOI:10.32604/cmes.2023.023234

    Abstract Prediction of students’ engagement in a Collaborative Learning setting is essential to improve the quality of learning. Collaborative learning is a strategy of learning through groups or teams. When cooperative learning behavior occurs, each student in the group should participate in teaching activities. Researchers showed that students who are actively involved in a class gain more. Gaze behavior and facial expression are important nonverbal indicators to reveal engagement in collaborative learning environments. Previous studies require the wearing of sensor devices or eye tracker devices, which have cost barriers and technical interference for daily teaching practice. In this paper, student engagement… More >

  • Open Access

    ARTICLE

    A Multi-Modal Deep Learning Approach for Emotion Recognition

    H. M. Shahzad1,3, Sohail Masood Bhatti1,3,*, Arfan Jaffar1,3, Muhammad Rashid2

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1561-1570, 2023, DOI:10.32604/iasc.2023.032525

    Abstract In recent years, research on facial expression recognition (FER) under mask is trending. Wearing a mask for protection from Covid 19 has become a compulsion and it hides the facial expressions that is why FER under the mask is a difficult task. The prevailing unimodal techniques for facial recognition are not up to the mark in terms of good results for the masked face, however, a multimodal technique can be employed to generate better results. We proposed a multimodal methodology based on deep learning for facial recognition under a masked face using facial and vocal expressions. The multimodal has been… More >

  • Open Access

    ARTICLE

    A Novel Efficient Patient Monitoring FER System Using Optimal DL-Features

    Mousa Alhajlah*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6161-6175, 2023, DOI:10.32604/cmc.2023.032505

    Abstract Automated Facial Expression Recognition (FER) serves as the backbone of patient monitoring systems, security, and surveillance systems. Real-time FER is a challenging task, due to the uncontrolled nature of the environment and poor quality of input frames. In this paper, a novel FER framework has been proposed for patient monitoring. Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation. Two lightweight efficient Convolution Neural Network (CNN) models MobileNetV2 and Neural search Architecture Network Mobile (NasNetMobile) are trained, and feature vectors are extracted. The Whale Optimization Algorithm (WOA) is utilized to remove irrelevant features from these… More >

  • Open Access

    ARTICLE

    An Analysis Model of Learners’ Online Learning Status Based on Deep Neural Network and Multi-Dimensional Information Fusion

    Mingyong Li1, Lirong Tang1, Longfei Ma1, Honggang Zhao1, Jinyu Hu1, Yan Wei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2349-2371, 2023, DOI:10.32604/cmes.2023.022604

    Abstract The learning status of learners directly affects the quality of learning. Compared with offline teachers, it is difficult for online teachers to capture the learning status of students in the whole class, and it is even more difficult to continue to pay attention to students while teaching. Therefore, this paper proposes an online learning state analysis model based on a convolutional neural network and multi-dimensional information fusion. Specifically, a facial expression recognition model and an eye state recognition model are constructed to detect students’ emotions and fatigue, respectively. By integrating the detected data with the homework test score data after… More >

  • Open Access

    ARTICLE

    Human-Computer Interaction Using Deep Fusion Model-Based Facial Expression Recognition System

    Saiyed Umer1,*, Ranjeet Kumar Rout2, Shailendra Tiwari3, Ahmad Ali AlZubi4, Jazem Mutared Alanazi4, Kulakov Yurii5

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1165-1185, 2023, DOI:10.32604/cmes.2022.023312

    Abstract A deep fusion model is proposed for facial expression-based human-computer Interaction system. Initially, image preprocessing, i.e., the extraction of the facial region from the input image is utilized. Thereafter, the extraction of more discriminative and distinctive deep learning features is achieved using extracted facial regions. To prevent overfitting, in-depth features of facial images are extracted and assigned to the proposed convolutional neural network (CNN) models. Various CNN models are then trained. Finally, the performance of each CNN model is fused to obtain the final decision for the seven basic classes of facial expressions, i.e., fear, disgust, anger, surprise, sadness, happiness,… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition Based on Multi-Channel Attention Residual Network

    Tongping Shen1,2,*, Huanqing Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 539-560, 2023, DOI:10.32604/cmes.2022.022312

    Abstract For the problems of complex model structure and too many training parameters in facial expression recognition algorithms, we proposed a residual network structure with a multi-headed channel attention (MCA) module. The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples. The designed MCA module is integrated into the ResNet18 backbone network. The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights, and the multi-head structure focuses more on the local features of the pictures, which improves the efficiency of facial… More >

  • Open Access

    ARTICLE

    Data Mining Approach Based on Hierarchical Gaussian Mixture Representation Model

    Hanan A. Hosni Mahmoud1,*, Alaaeldin M. Hafez2, Fahd Althukair3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3727-3741, 2023, DOI:10.32604/iasc.2023.031442

    Abstract Infinite Gaussian mixture process is a model that computes the Gaussian mixture parameters with order. This process is a probability density distribution with adequate training data that can converge to the input density curve. In this paper, we propose a data mining model namely Beta hierarchical distribution that can solve axial data modeling. A novel hierarchical Two-Hyper-Parameter Poisson stochastic process is developed to solve grouped data modelling. The solution uses data mining techniques to link datum in groups by linking their components. The learning techniques are novel presentations of Gaussian modelling that use prior knowledge of the representation hyper-parameters and… More >

Displaying 1-10 on page 1 of 25. Per Page  

Share Link