Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    False Alarm Reduction in ICU Using Ensemble Classifier Approach

    V. Ravindra Krishna Chandar1,*, M. Thangamani2

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 165-181, 2022, DOI:10.32604/iasc.2022.022339 - 15 April 2022

    Abstract

    During patient monitoring, false alert in the Intensive Care Unit (ICU) becomes a major problem. In the category of alarms, pseudo alarms are regarded as having no clinical or therapeutic significance, and thus they result in fatigue alarms. Artifacts are misrepresentations of tissue structures produced by imaging techniques. These Artifacts can invalidate the Arterial Blood Pressure (ABP) signal. Therefore, it is very important to develop algorithms that can detect artifacts. However, ABP has algorithmic shortcomings and limitations of design. This study is aimed at developing a real-time enhancement of independent component analysis (EICA) and time-domain

    More >

  • Open Access

    ARTICLE

    A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19

    Ahmed Reda*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1381-1399, 2022, DOI:10.32604/cmc.2022.019809 - 07 September 2021

    Abstract Many respiratory infections around the world have been caused by coronaviruses. COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate. There is a high need for computer-assisted diagnostics (CAD) in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems. Machine learning (ML) has been used to examine chest X-ray frames. In this paper, a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes, a pneumonia patient, a More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling

    Susom Dutta1, A. Ramach,ra Murthy2, Dookie Kim3, Pijush Samui4

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 157-174, 2017, DOI:10.3970/cmc.2017.053.167

    Abstract In the present scenario, computational modeling has gained much importance for the prediction of the properties of concrete. This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) have been employed in the present study for the prediction of compressive strength of self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage More >

Displaying 1-10 on page 1 of 3. Per Page