Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers

    Asma A. Alhashmi1, Abdulbasit A. Darem1,*, Sultan M. Alanazi1, Abdullah M. Alashjaee2, Bader Aldughayfiq3, Fuad A. Ghaleb4,5, Shouki A. Ebad1, Majed A. Alanazi1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3483-3498, 2023, DOI:10.32604/cmc.2023.041038 - 08 October 2023

    Abstract In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an Artificial Neural Network (ANN) classifier, offering a potent response to the sophisticated evasion and obfuscation techniques frequently deployed by malware authors. The model’s design capitalizes on the benefits of both static and dynamic analysis to extract… More >

  • Open Access

    ARTICLE

    Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records

    Saeed Ali Alsareii1, Muhammad Awais2,*, Abdulrahman Manaa Alamri1, Mansour Yousef AlAsmari1, Muhammad Irfan3, Mohsin Raza2, Umer Manzoor4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3715-3728, 2023, DOI:10.32604/csse.2023.035687 - 03 April 2023

    Abstract Obesity is a critical health condition that severely affects an individual’s quality of life and well-being. The occurrence of obesity is strongly associated with extreme health conditions, such as cardiac diseases, diabetes, hypertension, and some types of cancer. Therefore, it is vital to avoid obesity and or reverse its occurrence. Incorporating healthy food habits and an active lifestyle can help to prevent obesity. In this regard, artificial intelligence (AI) can play an important role in estimating health conditions and detecting obesity and its types. This study aims to see obesity levels in adults by implementing… More >

  • Open Access

    ARTICLE

    Prediction of Alzheimer’s Using Random Forest with Radiomic Features

    Anuj Singh*, Raman Kumar, Arvind Kumar Tiwari

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 513-530, 2023, DOI:10.32604/csse.2023.029608 - 16 August 2022

    Abstract Alzheimer’s disease is a non-reversible, non-curable, and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention. It is a frequently occurring mental illness that occurs in about 60%–80% of cases of dementia. It is usually observed between people in the age group of 60 years and above. Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Alzheimer’s disease is the last phase of the disease where the brain is severely… More >

  • Open Access

    ARTICLE

    Click through Rate Effectiveness Prediction on Mobile Ads Using Extreme Gradient Boosting

    AlAli Moneera, AlQahtani Maram, AlJuried Azizah, Taghareed AlOnizan, Dalia Alboqaytah, Nida Aslam*, Irfan Ullah Khan

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1681-1696, 2021, DOI:10.32604/cmc.2020.013466 - 26 November 2020

    Abstract Online advertisements have a significant influence over the success or failure of your business. Therefore, it is important to somehow measure the impact of your advertisement before uploading it online, and this is can be done by calculating the Click Through Rate (CTR). Unfortunately, this method is not eco-friendly, since you have to gather the clicks from users then compute the CTR. This is where CTR prediction come in handy. Advertisement CTR prediction relies on the users’ log regarding click information data. Accurate prediction of CTR is a challenging and critical process for e-advertising platforms… More >

  • Open Access

    ARTICLE

    Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm

    Xianghui Lu1, Junliang Fan2, Lifeng Wu1,*, Jianhua Dong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 699-723, 2020, DOI:10.32604/cmes.2020.011004 - 12 October 2020

    Abstract It is important for regional water resources management to know the agricultural water consumption information several months in advance. Forecasting reference evapotranspiration (ET0) in the next few months is important for irrigation and reservoir management. Studies on forecasting of multiple-month ahead ET0 using machine learning models have not been reported yet. Besides, machine learning models such as the XGBoost model has multiple parameters that need to be tuned, and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution. This study investigated the performance of the hybrid extreme… More >

  • Open Access

    ARTICLE

    A Novel Method of Heart Failure Prediction Based on DPCNNXGBOOST Model

    Yuwen Chen1, 2, 3, *, Xiaolin Qin1, 3, Lige Zhang1, 3, Bin Yi4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 495-510, 2020, DOI:10.32604/cmc.2020.011278 - 23 July 2020

    Abstract The occurrence of perioperative heart failure will affect the quality of medical services and threaten the safety of patients. Existing methods depend on the judgment of doctors, the results are affected by many factors such as doctors’ knowledge and experience. The accuracy is difficult to guarantee and has a serious lag. In this paper, a mixture prediction model is proposed for perioperative adverse events of heart failure, which combined with the advantages of the Deep Pyramid Convolutional Neural Networks (DPCNN) and Extreme Gradient Boosting (XGBOOST). The DPCNN was used to automatically extract features from patient’s More >

  • Open Access

    ARTICLE

    A Haze Feature Extraction and Pollution Level Identification Pre-Warning Algorithm

    Yongmei Zhang1, *, Jianzhe Ma2, Lei Hu3, Keming Yu4, Lihua Song1, 5, Huini Chen1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1929-1944, 2020, DOI:10.32604/cmc.2020.010556 - 30 June 2020

    Abstract The prediction of particles less than 2.5 micrometers in diameter (PM2.5) in fog and haze has been paid more and more attention, but the prediction accuracy of the results is not ideal. Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze. In order to improve the effects of prediction, this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning. Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze, and deep confidence More >

  • Open Access

    ARTICLE

    Simulation of Daily Diffuse Solar Radiation Based on Three Machine Learning Models

    Jianhua Dong1, Lifeng Wu2, Xiaogang Liu1, *, Cheng Fan1, Menghui Leng3, Qiliang Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 49-73, 2020, DOI:10.32604/cmes.2020.09014 - 01 April 2020

    Abstract Solar radiation is an important parameter in the fields of computer modeling, engineering technology and energy development. This paper evaluated the ability of three machine learning models, i.e., Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM) and Multivariate Adaptive Regression Splines (MARS), to estimate the daily diffuse solar radiation (Rd). The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters (including mean average temperature (Ta), theoretical sunshine duration (N), actual sunshine duration (n), daily average air relative humidity (RH), and extra-terrestrial solar radiation (Ra)). And their estimation accuracies were subjected to… More >

Displaying 1-10 on page 1 of 9. Per Page