Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    CORRECTION

    Correction: Fine-Tuned Extra Tree Classifier for Thermal Comfort Sensation Prediction

    Ahmad Almadhor1, Chitapong Wechtaisong2,*, Usman Tariq3, Natalia Kryvinska4,*, Abdullah Al Hejaili5, Uzma Ghulam Mohammad6, Mohana Alanazi7

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 855-856, 2024, DOI:10.32604/csse.2024.052412 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Fine-Tuned Extra Tree Classifier for Thermal Comfort Sensation Prediction

    Ahmad Almadhor1, Chitapong Wechtaisong2,*, Usman Tariq3, Natalia Kryvinska4,*, Abdullah Al Hejaili5, Uzma Ghulam Mohammad6, Mohana Alanazi7

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 199-216, 2024, DOI:10.32604/csse.2023.039546 - 26 January 2024

    Abstract Thermal comfort is an essential component of smart cities that helps to upgrade, analyze, and realize intelligent buildings. It strongly affects human psychological and physiological levels. Residents of buildings suffer stress because of poor thermal comfort. Buildings frequently use Heating, Ventilation, and Air Conditioning (HVAC) systems for temperature control. Better thermal states directly impact people’s productivity and health. This study revealed a human thermal comfort model that makes better predictions of thermal sensation by identifying essential features and employing a tuned Extra Tree classifier, MultiLayer Perceptron (MLP) and Naive Bayes (NB) models. The study employs More >

  • Open Access

    ARTICLE

    Adaptive XGBOOST Hyper Tuned Meta Classifier for Prediction of Churn Customers

    B. Srikanth1,*, Swarajya Lakshmi V. Papineni2, Gutta Sridevi3, D. N. V. S. L. S. Indira4, K. S. R. Radhika5, Khasim Syed6

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 21-34, 2022, DOI:10.32604/iasc.2022.022423 - 05 January 2022

    Abstract In India, the banks have a formidable edge in maintaining their customer retention ratio for past few decades. Downfall makes the private banks to reduce their operations and the nationalised banks merge with other banks. The researchers have used the traditional and ensemble algorithms with relevant feature engineering techniques to better classify the customers. The proposed algorithm uses a Meta classifier instead of an ensemble algorithm with an adaptive genetic algorithm for feature selection. Churn prediction is the number of customers who wants to terminate their services in the banking sector. The model considers twelve… More >

Displaying 1-10 on page 1 of 3. Per Page