Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    Bayesian and Non-Bayesian Analysis for the Sine Generalized Linear Exponential Model under Progressively Censored Data

    Naif Alotaibi1, A. S. Al-Moisheer2, Ibrahim Elbatal1, Mohammed Elgarhy3,4, Ehab M. Almetwally1,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2795-2823, 2024, DOI:10.32604/cmes.2024.049188 - 08 July 2024

    Abstract This article introduces a novel variant of the generalized linear exponential (GLE) distribution, known as the sine generalized linear exponential (SGLE) distribution. The SGLE distribution utilizes the sine transformation to enhance its capabilities. The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues. The suggested model incorporates a hazard rate function (HRF) that may display a rising, J-shaped, or bathtub form, depending on its unique characteristics. This model includes many well-known lifespan distributions as separate sub-models. The suggested model is accompanied with a range of More >

  • Open Access

    ARTICLE

    Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate: An Analytical Strategy

    T. Aghalya, R. Tamizharasi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 431-460, 2024, DOI:10.32604/cmes.2024.046635 - 16 April 2024

    Abstract In this study, the characteristics of heat transfer on an unsteady magnetohydrodynamic (MHD) Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated. The flow was driven by the combined effects of the magnetic field, heat radiation, heat source/sink and chemical reaction. Copper oxide () and titanium oxide () are acknowledged as nanoparticle materials. The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions. Graphical representations are provided to analyze how changes in physical parameters, such as the magnetic field, heat radiation, heat source/sink and chemical… More >

  • Open Access

    ARTICLE

    Enhanced Differentiable Architecture Search Based on Asymptotic Regularization

    Cong Jin1, Jinjie Huang1,2,*, Yuanjian Chen1, Yuqing Gong1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1547-1568, 2024, DOI:10.32604/cmc.2023.047489 - 27 February 2024

    Abstract In differentiable search architecture search methods, a more efficient search space design can significantly improve the performance of the searched architecture, thus requiring people to carefully define the search space with different complexity according to various operations. Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search. With this in mind, we propose a faster and more efficient differentiable architecture search method, AllegroNAS. Firstly, we introduce a more efficient search space enriched by the introduction of two redefined convolution modules. Secondly, we utilize a… More >

  • Open Access

    ARTICLE

    Efficiency of a Modular Cleanroom for Space Applications

    Matthew R. Coburn1, Charlie Young2, Chris Smith2, Graham Schultz2, Miguel Robayo3, Zheng-Tong Xie1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 547-562, 2024, DOI:10.32604/fdmp.2023.028601 - 12 January 2024

    Abstract A prototype cleanroom for hazardous testing and handling of satellites prior to launcher encapsulation, satisfying the ISO8 standard has been designed and analyzed in terms of performances. Unsteady Reynolds Averaged Navier-Stokes (URANS) models have been used to study the related flow field and particulate matter (PM) dispersion. The outcomes of the URANS models have been validated through comparison with equivalent large-eddy simulations. Special attention has been paid to the location and shape of the air intakes and their orientation in space, in order to balance the PM convection and diffusion inside the cleanroom. Forming a More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539 - 30 November 2023

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are More >

  • Open Access

    ARTICLE

    Reliability Analysis of HEE Parameters via Progressive Type-II Censoring with Applications

    Heba S. Mohammed1, Mazen Nassar2,3, Refah Alotaibi1, Ahmed Elshahhat4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2761-2793, 2023, DOI:10.32604/cmes.2023.028826 - 03 August 2023

    Abstract A new extended exponential lifetime model called Harris extended-exponential (HEE) distribution for data modelling with increasing and decreasing hazard rate shapes has been considered. In the reliability context, researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test time and/or test sample size. So, this study considers both maximum likelihood and Bayesian estimates of the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive Type-II censoring strategy. Under the premise of independent gamma priors, the Bayesian estimation is created using the squared-error and… More >

  • Open Access

    ARTICLE

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

    Mohammad Aslefallah1, Şuayip Yüzbaşi2, Saeid Abbasbandy1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1687-1706, 2023, DOI:10.32604/cmes.2023.025647 - 06 February 2023

    Abstract In this work, the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus (COVID-19). The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics, namely, susceptible (S), infected (I), treatment (T), and recovered (R). The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points. To indicate the usefulness of this method, we employ it in some cases. For error More > Graphic Abstract

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

  • Open Access

    ARTICLE

    Finite Element Simulation of Temperature Variations in Concrete Bridge Girders

    Hongzhi Liu1, Shasha Wu1, Yongjun Zhang2,*, Tongxu Hu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1551-1572, 2023, DOI:10.32604/fdmp.2023.024430 - 30 January 2023

    Abstract The internal temperature of cast-in-place concrete bridges undergoes strong variations during the construction as a result of environmental factors. In order to determine precisely such variations, the present study relies on the finite element method, used to model the bridge box girder section and simulate the internal temperature distribution during construction. The numerical results display good agreement with measured temperature values. It is shown that when the external temperature is higher, and the internal and external temperature difference is relatively small, the deviation of the fitting line from existing specifications (Chinese specification, American specification, New More >

  • Open Access

    ARTICLE

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

    Kamran1, Siraj Ahmad1, Kamal Shah2,3,*, Thabet Abdeljawad2,4,*, Bahaaeldin Abdalla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2743-2765, 2023, DOI:10.32604/cmes.2023.023705 - 23 November 2022

    Abstract Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with order . Our proposed… More > Graphic Abstract

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

  • Open Access

    ARTICLE

    Finite Element Implementation of the Exponential Drucker–Prager Plasticity Model for Adhesive Joints

    Kerati Suwanpakpraek1,3, Baramee Patamaprohm1,3, Sacharuck Pornpeerakeat2,3, Arisara Chaikittiratana1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1765-1778, 2023, DOI:10.32604/cmes.2023.022523 - 23 November 2022

    Abstract

    This paper deals with the numerical implementation of the exponential Drucker-Parger plasticity model in the commercial finite element software, ABAQUS, via user subroutine UMAT for adhesive joint simulations. The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer. The developed user subroutine UMAT, which utilizes an associated plastic flow during a plastic deformation, can provide a good agreement between the simulations and the experimental data. Better numerical stability at highly positive hydrostatic pressure loads for a very

    More > Graphic Abstract

    Finite Element Implementation of the Exponential Drucker–Prager Plasticity Model for Adhesive Joints

Displaying 1-10 on page 1 of 62. Per Page