Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    REVIEW

    The Transparency Revolution in Geohazard Science: A Systematic Review and Research Roadmap for Explainable Artificial Intelligence

    Moein Tosan1,*, Vahid Nourani2,3, Ozgur Kisi4,5,6, Yongqiang Zhang7, Sameh A. Kantoush8, Mekonnen Gebremichael9, Ruhollah Taghizadeh-Mehrjardi10, Jinhui Jeanne Huang11

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074768 - 29 January 2026

    Abstract The integration of machine learning (ML) into geohazard assessment has successfully instigated a paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of 87 foundational… More >

  • Open Access

    REVIEW

    Learning from Scarcity: A Review of Deep Learning Strategies for Cold-Start Energy Time-Series Forecasting

    Jihoon Moon*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071052 - 29 January 2026

    Abstract Predicting the behavior of renewable energy systems requires models capable of generating accurate forecasts from limited historical data, a challenge that becomes especially pronounced when commissioning new facilities where operational records are scarce. This review aims to synthesize recent progress in data-efficient deep learning approaches for addressing such “cold-start” forecasting problems. It primarily covers three interrelated domains—solar photovoltaic (PV), wind power, and electrical load forecasting—where data scarcity and operational variability are most critical, while also including representative studies on hydropower and carbon emission prediction to provide a broader systems perspective. To this end, we examined… More >

  • Open Access

    REVIEW

    A Systematic Review of Frameworks for the Detection and Prevention of Card-Not-Present (CNP) Fraud

    Kwabena Owusu-Mensah*, Edward Danso Ansong , Kofi Sarpong Adu-Manu, Winfred Yaokumah

    Journal of Cyber Security, Vol.8, pp. 33-92, 2026, DOI:10.32604/jcs.2026.074265 - 20 January 2026

    Abstract The rapid growth of digital payment systems and remote financial services has led to a significant increase in Card-Not-Present (CNP) fraud, which is now the primary source of card-related losses worldwide. Traditional rule-based fraud detection methods are becoming insufficient due to several challenges, including data imbalance, concept drift, privacy concerns, and limited interpretability. In response to these issues, a systematic review of twenty-four CNP fraud detection frameworks developed between 2014 and 2025 was conducted. This review aimed to identify the technologies, strategies, and design considerations necessary for adaptive solutions that align with evolving regulatory standards.… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    An Explainable Deep Learning Framework for Kidney Cancer Classification Using VGG16 and Layer-Wise Relevance Propagation on CT Images

    Asma Batool1, Fahad Ahmed1, Naila Sammar Naz1, Ayman Altameem2, Ateeq Ur Rehman3,4, Khan Muhammad Adnan5,*, Ahmad Almogren6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4129-4152, 2025, DOI:10.32604/cmes.2025.073149 - 23 December 2025

    Abstract Early and accurate cancer diagnosis through medical imaging is crucial for guiding treatment and enhancing patient survival. However, many state-of-the-art deep learning (DL) methods remain opaque and lack clinical interpretability. This paper presents an explainable artificial intelligence (XAI) framework that combines a fine-tuned Visual Geometry Group 16-layer network (VGG16) convolutional neural network with layer-wise relevance propagation (LRP) to deliver high-performance classification and transparent decision support. This approach is evaluated on the publicly available Kaggle kidney cancer imaging dataset, which comprises labeled cancerous and non-cancerous kidney scans. The proposed model achieved 98.75% overall accuracy, with precision, More >

  • Open Access

    REVIEW

    A Systematic Review of Multimodal Fusion and Explainable AI Applications in Breast Cancer Diagnosis

    Deema Alzamil1,2,*, Bader Alkhamees2, Mohammad Mehedi Hassan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2971-3027, 2025, DOI:10.32604/cmes.2025.070867 - 23 December 2025

    Abstract Breast cancer diagnosis relies heavily on many kinds of information from diverse sources—like mammogram images, ultrasound scans, patient records, and genetic tests—but most AI tools look at only one of these at a time, which limits their ability to produce accurate and comprehensive decisions. In recent years, multimodal learning has emerged, enabling the integration of heterogeneous data to improve performance and diagnostic accuracy. However, doctors cannot always see how or why these AI tools make their choices, which is a significant bottleneck in their reliability, along with adoption in clinical settings. Hence, people are adding… More >

  • Open Access

    ARTICLE

    CARE: Comprehensive Artificial Intelligence Techniques for Reliable Autism Evaluation in Pediatric Care

    Jihoon Moon1, Jiyoung Woo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1383-1425, 2025, DOI:10.32604/cmc.2025.067784 - 29 August 2025

    Abstract Improving early diagnosis of autism spectrum disorder (ASD) in children increasingly relies on predictive models that are reliable and accessible to non-experts. This study aims to develop such models using Python-based tools to improve ASD diagnosis in clinical settings. We performed exploratory data analysis to ensure data quality and identify key patterns in pediatric ASD data. We selected the categorical boosting (CatBoost) algorithm to effectively handle the large number of categorical variables. We used the PyCaret automated machine learning (AutoML) tool to make the models user-friendly for clinicians without extensive machine learning expertise. In addition,… More >

  • Open Access

    ARTICLE

    An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management

    Qamar H. Naith1,*, H. Mancy2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 387-405, 2025, DOI:10.32604/cmes.2025.066917 - 31 July 2025

    Abstract Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL) with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource management. In the methodology, the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Privacy in Cloud IoT Networks Using Anomaly Detection and Optimization with Explainable AI (ExAI)

    Jitendra Kumar Samriya1, Virendra Singh2, Gourav Bathla3, Meena Malik4, Varsha Arya5,6, Wadee Alhalabi7, Brij B. Gupta8,9,10,11,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3893-3910, 2025, DOI:10.32604/cmc.2025.063242 - 03 July 2025

    Abstract The integration of the Internet of Things (IoT) into healthcare systems improves patient care, boosts operational efficiency, and contributes to cost-effective healthcare delivery. However, overcoming several associated challenges, such as data security, interoperability, and ethical concerns, is crucial to realizing the full potential of IoT in healthcare. Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems. In this context, this paper presents a novel method for healthcare data privacy analysis. The technique is based on the identification of anomalies in… More >

  • Open Access

    ARTICLE

    FSFS: A Novel Statistical Approach for Fair and Trustworthy Impactful Feature Selection in Artificial Intelligence Models

    Ali Hamid Farea1,*, Iman Askerzade1,2, Omar H. Alhazmi3, Savaş Takan4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1457-1484, 2025, DOI:10.32604/cmc.2025.064872 - 09 June 2025

    Abstract Feature selection (FS) is a pivotal pre-processing step in developing data-driven models, influencing reliability, performance and optimization. Although existing FS techniques can yield high-performance metrics for certain models, they do not invariably guarantee the extraction of the most critical or impactful features. Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features. However, the challenge of discerning the most relevant and influential features persists, particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial… More >

Displaying 1-10 on page 1 of 31. Per Page