Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

    Kai Yang1,2, Qinwen Yao1,2, Yingshan Li1,2, Wanchang Chen1,2, Saleh Khorasani3, Hua Wang1,2, Qingtai Xiao1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2585-2602, 2024, DOI:10.32604/fdmp.2024.050704 - 28 October 2024

    Abstract Particle suspension and deposition dynamics are significant factors affecting the level of mixing quality in solid-liquid two-phase stirring processes. In general, the ability to increase the suspension rate and minimize deposition effects is instrumental in improving the uniformity of particle mixing, accelerating the reaction of involved solid-liquid two-phase, and improving the efficiency of production operations. In this work, suspension and deposition indicator based on the Betti number and a uniformity indicator are introduced and obtained by means of image analysis. The influence of the blade type, rotation speed, blade diameter and blade bottom height on… More > Graphic Abstract

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

  • Open Access

    PROCEEDINGS

    The Effect of Fatigue Loading Frequency on the Fatigue Crack Growth Behavior of a Nickel-Based Superalloy: Experimental Investigation and Modelling

    Yi Shi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012366

    Abstract The Nickel-based superalloy is wieldy applied in hot components of aero turbine engine due to its superior mechanical property at elevated temperature. However, the working condition of engine hot components are severe and thus the effect of high temperature, oxidation and time-dependent loading on fatigue crack growth behavior should be considered in structure analysis. In this study, first the effect of environment was experimentally investigated. Stand compact tension (CT) specimens under different temperatures and loading frequencies were tests to evaluate the role of temperature and time-dependent effect on fatigue crack growth. Results show that if… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Wave–Current Loads on a Bridge Shuttle-Shaped Cap–Pile Foundation

    Chenkai Hong1,2,*, Zhongda Lyu2,*, Fei Wang2, Zhuo Zhao2, Lei Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1565-1592, 2024, DOI:10.32604/fdmp.2024.042685 - 23 July 2024

    Abstract To scrutinize the characteristics of wave–current loads on a bridge shuttle-shaped cap–pile foundation, a 1:125 test model was considered in a laboratory flume. The inline, transverse and vertical wave–current forces acting on the shuttle-shaped cap–pile group model were measured considering both random waves and a combination of random waves with a current. The experimental results have shown that the wave–current forces can be well correlated with the wave height, the wavelength, the current velocity, the incident direction and the water level in the marine environment. An increase in the current velocity can lead to a More >

  • Open Access

    ARTICLE

    Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds

    Karim Choubani1,2,*, Ons Ghriss3, Nashmi H. Alrasheedi1, Sirin Dhaoui2, Abdallah Bouabidi2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 341-358, 2024, DOI:10.32604/fhmt.2024.047016 - 21 March 2024

    Abstract Faced with the world’s environmental and energy-related challenges, researchers are turning to innovative, sustainable and intelligent solutions to produce, store, and distribute energy. This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond. Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials. This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with (SGSP) and without (SGSPP) paraffin wax (PW) as a phase-change material (PCM). Temperature and salinity were… More >

  • Open Access

    ARTICLE

    An Experimental Investigation of Aero-Foil-Shaped Pin Fin Arrays

    Mainak Bhaumik1, Anirban Sur2,*, Kavita Dhanawade3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 467-486, 2023, DOI:10.32604/fhmt.2023.044605 - 30 November 2023

    Abstract Pin fins are widely used in applications where effective heat transfer is crucial. Their compact design, high surface area, and efficient heat transfer characteristics make them a practical choice for many thermal management applications. But for a high heat transfer rate and lightweight application, aerofoil shape pin fins are a good option. This work focuses on an experimental model analysis of pin-fins with aerofoil shapes. The results were evaluated between perforation, no perforation, inline, and staggered fin configurations. Aluminum is used to make the pin fins array. The experiment is carried out inside a wind… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Strength and Ductility Performance of SteelTimber-Steel Joints with Screw and Steel-Tube Fasteners

    Huifeng Yang, Mingwang Wu, Rixin Gu, Hang Cao, Kai Xiao, Benkai Shi*

    Journal of Renewable Materials, Vol.11, No.12, pp. 4175-4195, 2023, DOI:10.32604/jrm.2023.028507 - 10 November 2023

    Abstract This article presents experimental results of steel-timber-steel (STS) joints loaded parallel to grain. Eight groups of specimens were designed, and tensile tests were performed. The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints. The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners. The experimental results were discussed in terms of yielding and ultimate strengths, slip stiffness, and ductility factors. The ductility classification and failure mechanisms of each group of specimens were analyzed. It was… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol.11, No.11, pp. 3957-3975, 2023, DOI:10.32604/jrm.2023.028290 - 31 October 2023

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol… More > Graphic Abstract

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

  • Open Access

    ARTICLE

    Experimental Investigation on Fracturing Behaviors after Liquid Nitrogen Pre-Injection in High-Temperature Sandstone

    Decheng Li1, Yan Zhang2, Dongdong Ma2, Haozhe Geng1, Yu Wu1,2,*

    Energy Engineering, Vol.120, No.11, pp. 2503-2516, 2023, DOI:10.32604/ee.2023.041803 - 31 October 2023

    Abstract The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability. Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks, effectively reducing fracture pressure and establishing intricate fracture networks, thus offering a potential solution for reservoir reconstruction. To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection, sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection, rock temperature, and in-situ stress conditions. The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions, complemented by… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Effect of Seal Presence on the Behavior of Double-Deck Floating Roofs in Cylindrical Steel Storage Tanks

    Alireza Doustvandi, Mehrzad Tahamouli Roudsari*, Behnoush Niazi

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 55-70, 2023, DOI:10.32604/sdhm.2022.017458 - 02 March 2023

    Abstract Liquid storage, particularly oil and petrochemical products which are considered hazardous liquid, are an important part of the oil industry. Thin-walled vertical cylindrical steel storage tanks are widely used in recent years. Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences. For instance, huge economic losses, environmental damages, and casualities, many studies have been done about these structures. past studies showed that liquid storage tanks, equipped with a floating roof, are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one… More >

  • Open Access

    ARTICLE

    An Experimental Investigation on Workability and Bleeding Behaviors of Cement Pastes Doped with Nano Titanium Oxide (n-TiO2) Nanoparticles and Fly Ash

    Fatih Çelik1,*, Oğuzhan Yıldız2, Andaç Batur Çolak3, Samet Mufit Bozkır1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 135-158, 2023, DOI:10.32604/fdmp.2022.021014 - 02 August 2022

    Abstract In this study, the workability of cement-based grouts containing n-TiO2 nanoparticles and fly ash has been investigated experimentally. Several characteristic quantities (including, but not limited to, the marsh cone flow time, the mini slump spreading diameter and the plate cohesion meter value) have been measured for different percentages of these additives. The use of fly ash as a mineral additive has been found to result in improvements in terms of workability behavior as expected. Moreover, if nano titanium oxide is also used, an improvement can be obtained regarding the bleeding values for the cement-based grout mixes. More >

Displaying 1-10 on page 1 of 48. Per Page