Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

    Tianen Liu1,2, Kun Dai1,2, Shiju Ren1,2, Chuanxiang Zhang1,2, Xiaoling Tang3,*, Jinghong Hu3,*, Yidong Cai3, Jun Lu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2981-2995, 2025, DOI:10.32604/fdmp.2025.073859 - 31 December 2025

    Abstract Many mature onshore oilfields have entered a high-water-cut stage, with reservoir recovery approaching economic limits. Converting these depleted or nearly depleted reservoirs into underground gas storage (UGS) facilities offers an efficient way to leverage their substantial storage potential. During cyclic gas injection and withdrawal, however, the reservoir experiences complex three-phase flow and repeated stress fluctuations, which can induce rock fatigue, inelastic deformation, and ultimately sand production. This study uses controlled physical experiments to simulate sand production in reservoir rocks subjected to alternating gas injection and production under three-phase conditions. After preparing oil-water-saturated cores through waterflooding,… More > Graphic Abstract

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

  • Open Access

    ARTICLE

    Time-Resolved Experimental Analysis of Granite–Mortar Interface Permeability under High-Temperature Conditions

    Wei Chen*, Yuanteng Zhao, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3033-3053, 2025, DOI:10.32604/fdmp.2025.073778 - 31 December 2025

    Abstract In deep underground engineering, geological disposal of nuclear waste, and geothermal development, the granite–mortar interface represents a critical weak zone that strongly influences sealing performance under high-temperature conditions. While previous studies have primarily focused on single materials, the dynamic evolution of interface permeability under thermal loading remains insufficiently understood. In this study, time-resolved gas permeability measurements under thermal cycling (20°C → 150°C → 20°C) were conducted, complemented by multi-scale microstructural characterization, to investigate the nonlinear evolution of permeability. Experimental results indicate that interface permeability at room temperature is approximately one order of magnitude higher than… More >

  • Open Access

    ARTICLE

    Experimental Analysis and Modeling of Ethanol-Biodiesel-Diesel Blends Injection Behavior

    Hailong Chen*, Yu Zhang, Xin Luan, Mingyu Zhang, Guanzhen Tao

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1753-1770, 2025, DOI:10.32604/fdmp.2025.066494 - 31 July 2025

    Abstract Fuel injection properties, including the injection rate (temporal aspects) and spray behavior (spatial aspects), play a crucial role in the combustion efficiency and emissions of diesel engines. This study investigates the effects of different ethanol-biodiesel-diesel (EBD) blends on the injection performance in diesel engines. Experimental tests are conducted to examine key injection parameters, such as spray penetration distance, spray cone angle, and droplet size, alongside an analysis of coupling leakage. The main findings are as follows: (1) The injection behavior of ethanol and diesel differs significantly. The addition of ethanol reduces the density, viscosity, and… More >

  • Open Access

    ARTICLE

    Experimental Analysis of the Impact of Starch and Xanthan Gum on the 3D Printing of Pumpkin Puree and Minced Pork

    Shourui Wang, Yibo Wang*, Kun Yang, Yu Li, Xin Su

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1439-1457, 2025, DOI:10.32604/fdmp.2025.062295 - 30 June 2025

    Abstract Hydrocolloids are widely used in meat products and pureed foods as they offer thickening and viscosity-enhancing effects that facilitate shaping and improve stability. In this study, the static shear rheological and dynamic viscoelastic properties of pumpkin puree (S) and pork mince (P) with the addition of various hydrocolloids were considered. Dedicated material printing experiments were conducted by means of a three-dimensional printing platform by using a coaxial dual-nozzle for sandwich composite printing of four different materials. In particular, the impact of different process parameters (printing speed 10~30 mm/s, filling density 10%~50%) was assessed in terms… More >

  • Open Access

    ARTICLE

    Optimizing Fine-Tuning in Quantized Language Models: An In-Depth Analysis of Key Variables

    Ao Shen1, Zhiquan Lai1,*, Dongsheng Li1,*, Xiaoyu Hu2

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 307-325, 2025, DOI:10.32604/cmc.2024.057491 - 03 January 2025

    Abstract Large-scale Language Models (LLMs) have achieved significant breakthroughs in Natural Language Processing (NLP), driven by the pre-training and fine-tuning paradigm. While this approach allows models to specialize in specific tasks with reduced training costs, the substantial memory requirements during fine-tuning present a barrier to broader deployment. Parameter-Efficient Fine-Tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency. Among these, QLoRA, which combines PEFT and quantization, has demonstrated notable success in reducing memory footprints during fine-tuning, prompting the development… More >

  • Open Access

    ARTICLE

    Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption: Experimental Analysis and Molecular Simulation

    Nannan Liu*, Hengchen Qi, Hui Xu, Yanfeng He

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1731-1741, 2024, DOI:10.32604/fdmp.2024.048354 - 06 August 2024

    Abstract Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks. Nevertheless, the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown. This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water. The problem is addressed in the framework of molecular dynamics simulation (Material Studio software) and experiments. The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into More > Graphic Abstract

    Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption: Experimental Analysis and Molecular Simulation

  • Open Access

    ARTICLE

    Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs

    Nan Liu1,2, Chen Hong3,4,5, Xinchao Su3,4,5, Xing Jin1,2, Chen Jiang3,4,5,*, Yuqi Shi1,2, Bingkun Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1867-1882, 2024, DOI:10.32604/fdmp.2024.047427 - 06 August 2024

    Abstract As the velocity of a train increases, the corresponding air pumping power consumption of the brake discs increases proportionally. In the present experimental study, a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel. In particular, three upstream velocities were selected on the basis of earlier investigations of trains operating at 160, 250, and 400 km/h, respectively. Moreover, 3D steady computational fluid dynamics (CFD) simulations of the flow field were conducted to compare with the wind tunnel test outcomes. The results for More >

  • Open Access

    ARTICLE

    An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction

    Lihui Ma1,*, Zhuo Han1, Wei Li1, Guangfeng Qi1, Ran Cheng2, Yuanyuan Wang1, Xiangran Mi3, Xiaohan Zhang1, Yunfei Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1381-1392, 2024, DOI:10.32604/fdmp.2024.046405 - 27 June 2024

    Abstract When a gas-liquid two-phase flow (GLTPF) enters a parallel separator through a T-junction, it generally splits unevenly. This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream. In order to investigate these aspects and, more specifically, the so-called bias phenomenon (all gas and liquid flowing to one pipe, while the other pipe is a liquid column that fluctuates up and down), laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes. Moreover, a GLTPF prediction model based on the principle of minimum potential energy was… More >

  • Open Access

    ARTICLE

    Experimental Analysis of Radial Centrifugal Pump Shutdown

    Xiao Sun1, Jiangbo Tong1, Yuliang Zhang2,*, Haibing Cai3, Wen Zhou4, Xiaoqi Jia5, Litao Ou6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 725-737, 2024, DOI:10.32604/fdmp.2023.045541 - 28 March 2024

    Abstract Centrifugal pumps are widely used in the metallurgy, coal, and building sectors. In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes, experiments were carried to determine the characteristic evolution of parameters such as speed, inlet and outlet pressure, head, flow rate and shaft power. A quasi-steady-state method was also used to further investigate these transient behaviors. The results show that, compared to the power frequency input, the performance parameter curves for the frequency conversion input are less volatile and More >

  • Open Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570 - 27 October 2023

    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is More >

Displaying 1-10 on page 1 of 29. Per Page