Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    A Novel Bi-Level VSC-DC Transmission Expansion Planning Method of VSC-DC for Power System Flexibility and Stability Enhancement

    Weigang Jin1, Lei Chen2,*, Shencong Zheng2, Yuqi Jiang2, Yifei Li2, Hongkun Chen2

    Energy Engineering, Vol.121, No.11, pp. 3161-3179, 2024, DOI:10.32604/ee.2024.054068 - 21 October 2024

    Abstract Investigating flexibility and stability boosting transmission expansion planning (TEP) methods can increase the renewable energy (RE) consumption of the power systems. In this study, we propose a bi-level TEP method for voltage-source-converter-based direct current (VSC-DC), focusing on flexibility and stability enhancement. First, we established the TEP framework of VSC-DC, by introducing the evaluation indices to quantify the power system flexibility and stability. Subsequently, we propose a bi-level VSC-DC TEP model: the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization (IMFO) algorithm, and the lower-level model evaluates the flexibility More >

  • Open Access

    ARTICLE

    A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

    Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 997-1032, 2024, DOI:10.32604/cmes.2024.053047 - 27 September 2024

    Abstract Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the… More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments

    Yujing Ma1,4, Zhongwang Wang2, Jieyuan Zhang3, Ruijin Huo1,4, Xiaohui Yuan1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2079-2102, 2024, DOI:10.32604/cmes.2024.048488 - 20 May 2024

    Abstract In this paper, an adaptive polynomial chaos expansion method (PCE) based on the method of moments (MoM) is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis. The MoM is applied to accurately solve the electric field integral equation (EFIE) of electromagnetic scattering from homogeneous dielectric targets. Within the bistatic radar cross section (RCS) as the research object, the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model. The corresponding sensitivity results are given by the further derivative operation, which is compared with those of More >

  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464 - 30 April 2024

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning… More >

  • Open Access

    ARTICLE

    On the Preparation of Low-Temperature-Rise and Low-Shrinkage Concrete Based on Phosphorus Slag

    Jianlong Jin, Jingjing Ding, Long Xiong, Ming Bao, Peng Zeng*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 803-814, 2024, DOI:10.32604/fdmp.2023.027311 - 28 March 2024

    Abstract The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties, shrinkage behavior, and the heat of hydration of concrete were studied. The slump flow, setting time, dry shrinkage, and hydration heat were used as sensitive parameters to assess the response of the considered specimens. As shown by the results, in general, with an increase in the phosphorus slag content, the hydration heat of concrete decreases for all ages, but the early strength displays a downward trend and the dry shrinkage rate increases. The 90-d strength and dry shrinkage More > Graphic Abstract

    On the Preparation of Low-Temperature-Rise and Low-Shrinkage Concrete Based on Phosphorus Slag

  • Open Access

    ARTICLE

    Research on the Generation Mechanism and Suppression Method of Aerodynamic Noise in Expansion Cavity Based on Hybrid Method

    Haitao Liu1,2,*, Jiaming Wang1, Xiuliang Zhang1, Yanji Jiang2, Qian Xiao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2747-2772, 2024, DOI:10.32604/cmes.2024.047129 - 11 March 2024

    Abstract The expansion chamber serves as the primary silencing structure within the exhaust pipeline. However, it can also act as a sound-emitting structure when subjected to airflow. This article presents a hybrid method for numerically simulating and analyzing the unsteady flow and aerodynamic noise in an expansion chamber under the influence of airflow. A fluid simulation model is established, utilizing the Large Eddy Simulation (LES) method to calculate the unsteady flow within the expansion chamber. The simulation results effectively capture the development and changes of the unsteady flow and vorticity inside the cavity, exhibiting a high… More > Graphic Abstract

    Research on the Generation Mechanism and Suppression Method of Aerodynamic Noise in Expansion Cavity Based on Hybrid Method

  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238 - 15 December 2023

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are… More >

  • Open Access

    ARTICLE

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

    Zi Han1,*, Zhentian Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 245-272, 2024, DOI:10.32604/cmes.2023.029708 - 22 September 2023

    Abstract In the context of global mean square error concerning the number of random variables in the representation, the Karhunen–Loève (KL) expansion is the optimal series expansion method for random field discretization. The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem (IEVP). The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares (MLS), least squares (LS), and finite element method (FEM) to solve the IEVP. Compared with the Galerkin method based on finite element or Legendre polynomials,… More > Graphic Abstract

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

  • Open Access

    PROCEEDINGS

    The Method of Moments for Electromagnetic Scattering Analysis Accelerated by the Polynomial Chaos Expansion in Infinite Domains

    Yujing Ma1,*, Leilei Chen2,3, Haojie Lian3,4, Zhongwang Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010585

    Abstract An efficient method of moments (MoM) based on polynomial chaos expansion(PCE) is applied to quickly calculate the electromagnetic scattering problems. The triangle basic functions are used to discretize the surface integral equations. The PCE is utilized to accelerate the MoM by constructing a surrogate model for univariate and bivariate analysis[1]. The mathematical expressions of the surrogate model for the radar cross-section (RCS) are established by considering uncertain parameters such as bistatic angle, incident frequency, and dielectric constant[2,3]. By using the example of a scattering cylinder with analytical solution, it is verified that the MoM accelerated More >

  • Open Access

    PROCEEDINGS

    Broadband Electromagnetic Scattering Analysis with Isogeometric Boundary Element Method Accelerated by Frequency-Decoupling and Model Order Reduction Techniques

    Yujing Ma1, Zhongwang Wang2, Xiaohui Yuan1, Leilei Chen2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09662

    Abstract The paper presents a novel fast calculation method for broadband Electromagnetic Scattering analysis. In this work, the isogeometric boundary element method is used to solve Helmholtz equations for the electromagnetic scattering problems. The non-uniform rational B-splines are employed to construct structural geometries and discretize electric and magnetic field integral equations [1,2]. To avoid timeconsuming multi-frequency calculations, the series expansion method is used to decouple the frequencydependent terms from the integrand in the boundary element method [3,4]. The second-order Arnoldi (SOAR) method is applied to construct a reduced-order model that retains the essential structures and key More >

Displaying 1-10 on page 1 of 75. Per Page