Olumuyiwa J. Peter1, Amjad S. Shaikh2,*, Mohammed O. Ibrahim1, Kottakkaran Sooppy Nisar3, Dumitru Baleanu4,5,6, Ilyas Khan7, Adesoye I. Abioye1
CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1823-1848, 2021, DOI:10.32604/cmc.2020.012314
- 26 November 2020
Abstract We propose a mathematical model of the coronavirus disease 2019 (COVID-19) to investigate the transmission and control mechanism of the disease in the community of Nigeria. Using stability theory of differential equations, the qualitative behavior of model is studied. The pandemic indicator represented by basic reproductive number R0 is obtained from the largest eigenvalue of the next-generation matrix. Local as well as global asymptotic stability conditions for the disease-free and pandemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of the disease. Further, we examined this model by using Atangana–Baleanu fractional derivative… More >