Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Computational Solutions of a Delay-Driven Stochastic Model for Conjunctivitis Spread

    Ali Raza1,*, Asad Ullah2, Eugénio M. Rocha1, Dumitru Baleanu3, Hala H. Taha4, Emad Fadhal5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3433-3461, 2025, DOI:10.32604/cmes.2025.069655 - 30 September 2025

    Abstract This study investigates the transmission dynamics of conjunctivitis using stochastic delay differential equations (SDDEs). A delayed stochastic model is formulated by dividing the population into five distinct compartments: susceptible, exposed, infected, environmental irritants, and recovered individuals. The model undergoes thorough analytical examination, addressing key dynamical properties including positivity, boundedness, existence, and uniqueness of solutions. Local and global stability around the equilibrium points is studied with respect to the basic reproduction number. The existence of a unique global positive solution for the stochastic delayed model is established. In addition, a stochastic nonstandard finite difference scheme is More >

  • Open Access

    ARTICLE

    Computational Modeling of Streptococcus Suis Dynamics via Stochastic Delay Differential Equations

    Umar Shafique1, Ali Raza2,7,*, Dumitru Baleanu3, Khadija Nasir4, Muhammad Naveed5, Abu Bakar Siddique1, Emad Fadhal6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 449-476, 2025, DOI:10.32604/cmes.2025.061635 - 11 April 2025

    Abstract Streptococcus suis (S. suis) is a major disease impacting pig farming globally. It can also be transferred to humans by eating raw pork. A comprehensive study was recently carried out to determine the indices through multiple geographic regions in China. Methods: The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features, including positivity, boundedness equilibria, reproduction number, and parameter sensitivity. Stochastic Euler, Runge Kutta, and Euler Maruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population. However, the dynamic… More >

  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773 - 11 March 2024

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

  • Open Access

    ARTICLE

    Fractal Fractional Order Operators in Computational Techniques for Mathematical Models in Epidemiology

    Muhammad Farman1,2,4, Ali Akgül3,9,*, Mir Sajjad Hashemi5, Liliana Guran6,7, Amelia Bucur8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1385-1403, 2024, DOI:10.32604/cmes.2023.028803 - 17 November 2023

    Abstract New fractional operators, the COVID-19 model has been studied in this paper. By using different numerical techniques and the time fractional parameters, the mechanical characteristics of the fractional order model are identified. The uniqueness and existence have been established. The model’s Ulam-Hyers stability analysis has been found. In order to justify the theoretical results, numerical simulations are carried out for the presented method in the range of fractional order to show the implications of fractional and fractal orders. We applied very effective numerical techniques to obtain the solutions of the model and simulations. Also, we… More >

  • Open Access

    ARTICLE

    Dynamical Model to Optimize Student’s Academic Performance

    Evren Hincal, Amna Hashim Alzadjali

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 393-411, 2022, DOI:10.32604/cmes.2022.019781 - 15 June 2022

    Abstract Excellent student’s academic performance is the uppermost priority and goal of educators and facilitators. The dubious marginal rate between admission and graduation rates unveils the rates of dropout and withdrawal from school. To improve the academic performance of students, we optimize the performance indices to the dynamics describing the academic performance in the form of nonlinear system ODE. We established the uniform boundedness of the model and the existence and uniqueness result. The independence and interdependence equilibria were found to be locally and globally asymptotically stable. The optimal control analysis was carried out, and lastly, More >

Displaying 1-10 on page 1 of 5. Per Page