Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization

    Tajim Md. Niamat Ullah Akhund1,2,*, Waleed M. Al-Nuwaiser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3485-3506, 2024, DOI:10.32604/cmc.2024.054222 - 12 September 2024

    Abstract This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant improvements were observed across various models, with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms. Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While More >

  • Open Access

    ARTICLE

    Modified Harris Hawks Optimization Based Test Case Prioritization for Software Testing

    Manar Ahmed Hamza1,*, Abdelzahir Abdelmaboud2, Souad Larabi-Marie-Sainte3, Haya Mesfer Alshahrani4, Mesfer Al Duhayyim5, Hamza Awad Ibrahim6, Mohammed Rizwanullah1, Ishfaq Yaseen1

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1951-1965, 2022, DOI:10.32604/cmc.2022.024692 - 24 February 2022

    Abstract Generally, software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software. But, the quality of test cases has a considerable influence on fault revealing capability of software testing activity. Test Case Prioritization (TCP) remains a challenging issue since prioritizing test cases is unsatisfactory in terms of Average Percentage of Faults Detected (APFD) and time spent upon execution results. TCP is mainly intended to design a collection of test cases that can accomplish early optimization using preferred characteristics. The studies conducted earlier focused on prioritizing the available test… More >

  • Open Access

    ARTICLE

    Packet Optimization of Software Defined Network Using Lion Optimization

    Jagmeet Kaur1, Shakeel Ahmed2, Yogesh Kumar3, A. Alaboudi4, N. Z. Jhanjhi5, Muhammad Fazal Ijaz6,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2617-2633, 2021, DOI:10.32604/cmc.2021.017470 - 21 July 2021

    Abstract There has been an explosion of cloud services as organizations take advantage of their continuity, predictability, as well as quality of service and it raises the concern about latency, energy-efficiency, and security. This increase in demand requires new configurations of networks, products, and service operators. For this purpose, the software-defined network is an efficient technology that enables to support the future network functions along with the intelligent applications and packet optimization. This work analyzes the offline cloud scenario in which machines are efficiently deployed and scheduled for user processing requests. Performance is evaluated in terms More >

Displaying 1-10 on page 1 of 3. Per Page