Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (103)
  • Open Access

    ARTICLE

    Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines

    Hongjiang Wang1, Qingze Shen2,*, Qin Dai1, Yingcai Gao2, Jing Gao2, Tian Zhang3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.051757

    Abstract Deep learning has emerged in many practical applications, such as image classification, fault diagnosis, and object detection. More recently, convolutional neural networks (CNNs), representative models of deep learning, have been used to solve fault detection. However, the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error. For this reason, an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection. YOLOv8 is a CNN-backed object detection model. Specifically, to reduce… More >

  • Open Access

    ARTICLE

    A Framework Based on the DAO and NFT in Blockchain for Electronic Document Sharing

    Lin Chen1, Jiaming Zhu1, Yuting Xu1, Huanqin Zheng1, Shen Su1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2373-2395, 2024, DOI:10.32604/cmes.2024.049996

    Abstract In the information age, electronic documents (e-documents) have become a popular alternative to paper documents due to their lower costs, higher dissemination rates, and ease of knowledge sharing. However, digital copyright infringements occur frequently due to the ease of copying, which not only infringes on the rights of creators but also weakens their creative enthusiasm. Therefore, it is crucial to establish an e-document sharing system that enforces copyright protection. However, the existing centralized system has outstanding vulnerabilities, and the plagiarism detection algorithm used cannot fully detect the context, semantics, style, and other factors of the… More >

  • Open Access

    ARTICLE

    Evolutionary Safe Padé Approximation Scheme for Dynamical Study of Nonlinear Cervical Human Papilloma Virus Infection Model

    Javaid Ali1, Armando Ciancio2, Kashif Ali Khan3, Nauman Raza4,5, Haci Mehmet Baskonus6,*, Muhammad Luqman1, Zafar-Ullah Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2275-2296, 2024, DOI:10.32604/cmes.2024.046923

    Abstract This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic (CCE) model. The underlying CCE model lacks a closed-form exact solution. Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties, such as positivity, boundedness, and feasibility. Therefore, the development of structure-preserving semi-analytical approaches is always necessary. This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem. Singularity-free safe Padé rational functions approximate the mathematical More >

  • Open Access

    ARTICLE

    A Data Intrusion Tolerance Model Based on an Improved Evolutionary Game Theory for the Energy Internet

    Song Deng1,*, Yiming Yuan2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3679-3697, 2024, DOI:10.32604/cmc.2024.052008

    Abstract Malicious attacks against data are unavoidable in the interconnected, open and shared Energy Internet (EI), Intrusion tolerant techniques are critical to the data security of EI. Existing intrusion tolerant techniques suffered from problems such as low adaptability, policy lag, and difficulty in determining the degree of tolerance. To address these issues, we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas: 1) it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights; and 2) it combines a tournament competition More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation

    Fangzhen Ge1,3, Yating Wu1,*, Debao Chen2,4, Longfeng Shen1,5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 189-211, 2024, DOI:10.32604/iasc.2024.042841

    Abstract It is still a huge challenge for traditional Pareto-dominated many-objective optimization algorithms to solve many-objective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front, resulting in poor performance of those algorithms. For this reason, we propose a reference vector-assisted algorithm with an adaptive niche dominance relation, for short MaOEA-AR. The new dominance relation forms a niche based on the angle between candidate solutions. By comparing these solutions, the solution with the best convergence is More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier

    Jun Wang1,2, Linxi Zhang1,2, Hao Zhang1, Funan Peng1,*, Mohammed A. El-Meligy3, Mohamed Sharaf3, Qiang Fu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1281-1299, 2024, DOI:10.32604/cmc.2024.048495

    Abstract The existing algorithms for solving multi-objective optimization problems fall into three main categories: Decomposition-based, dominance-based, and indicator-based. Traditional multi-objective optimization problems mainly focus on objectives, treating decision variables as a total variable to solve the problem without considering the critical role of decision variables in objective optimization. As seen, a variety of decision variable grouping algorithms have been proposed. However, these algorithms are relatively broad for the changes of most decision variables in the evolution process and are time-consuming in the process of finding the Pareto frontier. To solve these problems, a multi-objective optimization algorithm… More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing

    Shasha Zhao1,2,3,*, Huanwen Yan1,2, Qifeng Lin1,2, Xiangnan Feng1,2, He Chen1,2, Dengyin Zhang1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1135-1156, 2024, DOI:10.32604/cmc.2024.045660

    Abstract Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO) algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm. Comprehensive testing including evaluations of algorithm convergence speed,… More >

Displaying 1-10 on page 1 of 103. Per Page