Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (419)
  • Open Access

    PROCEEDINGS

    A Study on the Extraction and Evaluation Method of Virtual Strain

    Peiyan Wang1,*, Haoyu Wang1, Minghui Liu2, Fuchao Liu1, Zhufeng Yue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011318

    Abstract The virtual test is supported by the physical test data, and a high-precision simulation model needs to be established to maximize the alignment between the simulation prediction results and the physical test data. It can replace other physical tests and achieve the goal of reducing the design cycle time and cost. However, due to the errors caused by the position and angle deviation of the strain gauge paste, as well as the sensitivity coefficient of the strain gauge and the wire, it is difficult for the simulation results to correspond to the test results in… More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    ARTICLE

    Fuzzy Comprehensive Analysis of Static Mixers Used for Selective Catalytic Reduction in Diesel Engines

    Xin Luan1,*, Guoqing Su1, Hailong Chen1, Min Kuang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2459-2473, 2024, DOI:10.32604/fdmp.2024.054621 - 28 October 2024

    Abstract The proper selection of a relevant mixer generally requires an effective assessment of several models against the application requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses a urea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limited and the distance between the urea aqueous solution injection position and the reactor is low; therefore, the static mixer installed in this pipeline has special performance requirements. In particular,… More >

  • Open Access

    ARTICLE

    Hydraulic Fracture Parameter Inversion Method for Shale Gas Wells Based on Transient Pressure-Drop Analysis during Hydraulic Fracturing Shut-in Period

    Shangjun Gao1,2, Yang Yang1, Man Chen1, Jian Zheng1, Luqi Qin2,*, Xiangyu Liu2, Jianying Yang1

    Energy Engineering, Vol.121, No.11, pp. 3305-3329, 2024, DOI:10.32604/ee.2024.053622 - 21 October 2024

    Abstract Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs. Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness, optimizing processes, and predicting gas productivity. This paper establishes a transient flow model for shale gas wells based on the boundary element method, achieving the characterization of stimulated reservoir volume for a single stage. By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation, a workflow for inverting fracture parameters of shale gas wells is established. This new method… More >

  • Open Access

    ARTICLE

    Optimized Operation of Park Integrated Energy System with Source-Load Flexible Response Based on Comprehensive Evaluation Index

    Xinglong Chen, Ximin Cao*, Qifan Huang, He Huang

    Energy Engineering, Vol.121, No.11, pp. 3437-3460, 2024, DOI:10.32604/ee.2024.053464 - 21 October 2024

    Abstract To better reduce the carbon emissions of a park-integrated energy system (PIES), optimize the comprehensive operating cost, and smooth the load curve, a source-load flexible response model based on the comprehensive evaluation index is proposed. Firstly, a source-load flexible response model is proposed under the stepped carbon trading mechanism; the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power (CHP) unit and electric boiler to realize the flexible response of CHP to load; and the load-side categorizes loads into transferable, interruptible, and substitutable loads… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    ARTICLE

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

    Sha Liu*, Jianfa Wu, Xuefeng Yang, Weiyang Xie, Cheng Chang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2301-2321, 2024, DOI:10.32604/fdmp.2024.052454 - 23 September 2024

    Abstract The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers. Given challenges such as intricate data analysis, absence of effective assessment methodologies, real-time control strategies, and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage, a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques. The research results show that: (1) The flowback stage of a deep gas well presents… More > Graphic Abstract

    Evaluation and Application of Flowback Effect in Deep Shale Gas Wells

  • Open Access

    ARTICLE

    High-Precision Flow Numerical Simulation and Productivity Evaluation of Shale Oil Considering Stress Sensitivity

    Mingjing Lu1,2,*, Qin Qian1, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2281-2300, 2024, DOI:10.32604/fdmp.2024.051594 - 23 September 2024

    Abstract Continental shale oil reservoirs, characterized by numerous bedding planes and micro-nano scale pores, feature significantly higher stress sensitivity compared to other types of reservoirs. However, research on suitable stress sensitivity characterization models is still limited. In this study, three commonly used stress sensitivity models for shale oil reservoirs were considered, and experiments on representative core samples were conducted. By fitting and comparing the data, the “exponential model” was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs. To validate the accuracy of the model, a two-phase seepage mathematical model More >

  • Open Access

    ARTICLE

    Performance Evaluation of an Evaporative Cooling Pad for Humidification -Dehumidification Desalination

    Ibtissam El Aouni, Hicham Labrim, Elhoussaine Ouabida, Ahmed Ait Errouhi, Rachid El Bouayadi, Driss Zejli, Aouatif Saad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2323-2335, 2024, DOI:10.32604/fdmp.2024.050611 - 23 September 2024

    Abstract The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective, efficient and environmentally friendly way. The desalination technique by humidification-dehumidification is non-conventional approach suitable for areas with low infrastructure (such as rural and decentralized regions) since it does not require permanent maintenance. In this study, this technology is implemented by using solar energy as a source of thermal power. A seawater desalination unit is considered, which consists of a chamber with two evaporators (humidifiers), a wetted porous material made of a corrugated cellulose cardboard and a… More >

  • Open Access

    ARTICLE

    Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model

    Raed Alotaibi1, Omar Reyad2,3, Mohamed Esmail Karar4,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1133-1147, 2024, DOI:10.32604/csse.2024.053358 - 13 September 2024

    Abstract E-learning behavior data indicates several students’ activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures. This article proposes a new analytics system to support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments. The proposed e-learning analytics system includes a new deep forest model. It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks. The developed forest model can analyze each student’s activities during the use of an e-learning… More >

Displaying 1-10 on page 1 of 419. Per Page