Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (327)
  • Open Access

    ARTICLE

    Software Cost Estimation Using Social Group Optimization

    Sagiraju Srinadhraju*, Samaresh Mishra, Suresh Chandra Satapathy

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1641-1668, 2024, DOI:10.32604/csse.2024.055612 - 22 November 2024

    Abstract This paper introduces the integration of the Social Group Optimization (SGO) algorithm to enhance the accuracy of software cost estimation using the Constructive Cost Model (COCOMO). COCOMO’s fixed coefficients often limit its adaptability, as they don’t account for variations across organizations. By fine-tuning these parameters with SGO, we aim to improve estimation accuracy. We train and validate our SGO-enhanced model using historical project data, evaluating its performance with metrics like the mean magnitude of relative error (MMRE) and Manhattan distance (MD). Experimental results show that SGO optimization significantly improves the predictive accuracy of software cost More >

  • Open Access

    ARTICLE

    Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning

    Yameng Yin1, Lieping Zhang2,*, Xiaoxu Shi1, Yilin Wang3, Jiansheng Peng4, Jianchu Zou4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2769-2790, 2024, DOI:10.32604/cmc.2024.056791 - 18 November 2024

    Abstract By integrating deep neural networks with reinforcement learning, the Double Deep Q Network (DDQN) algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots. However, the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data. Targeting those problems, an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed. First, to enhance the precision of the target Q-value, the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value… More >

  • Open Access

    ARTICLE

    DAUNet: Detail-Aware U-Shaped Network for 2D Human Pose Estimation

    Xi Li1,2, Yuxin Li2, Zhenhua Xiao3,*, Zhenghua Huang1, Lianying Zou1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3325-3349, 2024, DOI:10.32604/cmc.2024.056464 - 18 November 2024

    Abstract Human pose estimation is a critical research area in the field of computer vision, playing a significant role in applications such as human-computer interaction, behavior analysis, and action recognition. In this paper, we propose a U-shaped keypoint detection network (DAUNet) based on an improved ResNet subsampling structure and spatial grouping mechanism. This network addresses key challenges in traditional methods, such as information loss, large network redundancy, and insufficient sensitivity to low-resolution features. DAUNet is composed of three main components. First, we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce… More >

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    SOH Estimation of Lithium Batteries Based on ICA and WOA-RBF Algorithm

    Qi Wang1,2,3, Yandong Gu1,*, Tao Zhu1, Lantian Ge1, Yibo Huang1

    Energy Engineering, Vol.121, No.11, pp. 3221-3239, 2024, DOI:10.32604/ee.2024.053758 - 21 October 2024

    Abstract Accurately estimating the State of Health (SOH) of batteries is of great significance for the stable operation and safety of lithium batteries. This article proposes a method based on the combination of Capacity Incremental Curve Analysis (ICA) and Whale Optimization Algorithm-Radial Basis Function (WOA-RBF) neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries. Firstly, preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage (Q-V) curve, convert the Q-V curve into an IC curve and denoise it, analyze the parameters… More >

  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024

    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open Access

    ARTICLE

    A Facial Expression Recognition Method Integrating Uncertainty Estimation and Active Learning

    Yujian Wang1, Jianxun Zhang1,*, Renhao Sun2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 533-548, 2024, DOI:10.32604/cmc.2024.054644 - 15 October 2024

    Abstract The effectiveness of facial expression recognition (FER) algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data. However, labeling large datasets demands significant human, time, and financial resources. Although active learning methods have mitigated the dependency on extensive labeled data, a cold-start problem persists in small to medium-sized expression recognition datasets. This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics. This paper introduces an active learning approach that integrates uncertainty estimation, aiming to improve the precision of facial… More >

  • Open Access

    ARTICLE

    Adaptive Update Distribution Estimation under Probability Byzantine Attack

    Gang Long, Zhaoxin Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1667-1685, 2024, DOI:10.32604/cmc.2024.052082 - 15 October 2024

    Abstract The secure and normal operation of distributed networks is crucial for accurate parameter estimation. However, distributed networks are frequently susceptible to Byzantine attacks. Considering real-life scenarios, this paper investigates a probability Byzantine (PB) attack, utilizing a Bernoulli distribution to simulate the attack probability. Historically, additional detection mechanisms are used to mitigate such attacks, leading to increased energy consumption and burdens on distributed nodes, consequently diminishing operational efficiency. Differing from these approaches, an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks. In the proposed algorithm, a penalty strategy is initially More >

  • Open Access

    ARTICLE

    Modeling the Dynamics of Tuberculosis with Vaccination, Treatment, and Environmental Impact: Fractional Order Modeling

    Muhammad Altaf Khan1,*, Mahmoud H. DarAssi2, Irfan Ahmad3, Noha Mohammad Seyam4, Ebraheem Alzahrani5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1365-1394, 2024, DOI:10.32604/cmes.2024.053681 - 27 September 2024

    Abstract A mathematical model is designed to investigate Tuberculosis (TB) disease under the vaccination, treatment, and environmental impact with real cases. First, we introduce the model formulation in non-integer order derivative and then, extend the model into fractional order derivative. The fractional system’s existence, uniqueness, and other relevant properties are shown. Then, we study the stability analysis of the equilibrium points. The disease-free equilibrium (DFE) is locally asymptotically stable (LAS) when . Further, we show the global asymptotical stability (GAS) of the endemic equilibrium (EE) for and for . The existence of bifurcation analysis in the More >

Displaying 1-10 on page 1 of 327. Per Page