Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Process Characterization of the Transesterification of Rapeseed Oil to Biodiesel Using Design of Experiments and Infrared Spectroscopy

    Tobias Drieschner1,2,*, Andreas Kandelbauer1, Bernd Hitzmann2, Karsten Rebner1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1643-1660, 2023, DOI:10.32604/jrm.2023.024429 - 01 December 2022

    Abstract For optimization of production processes and product quality, often knowledge of the factors influencing the process outcome is compulsory. Thus, process analytical technology (PAT) that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality. The present study aims at characterizing a well-known industrial process, the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters (FAME) for usage as biodiesel in a continuous micro reactor… More >

  • Open Access

    REVIEW

    Methyl Ester Type Produced by Catalytic Transesterification: From Various Oil Feedstock to Biodiesel Products

    Aman Santoso*, Sumari Sumari, Muhammad Roy Asrori

    Energy Engineering, Vol.119, No.6, pp. 2255-2276, 2022, DOI:10.32604/ee.2022.021596 - 14 September 2022

    Abstract Biodiesel research has been carried out via transesterification. However, biodiesel products (methyl esters) have not encountered new insights, because feedstocks have been explored and studied. Various optimum conditions on transesterification reaction could produce different methyl ester type with different compound. So, this review describes various oil feedstock that were to find new insights about methyl ester type. The review took the results of study that has been published with experience for 10 years. The results of the study reviewed on the transesterification method, characterization of methyl esters, and its components. The component reviewed and correlated More > Graphic Abstract

    Methyl Ester Type Produced by Catalytic Transesterification: From Various Oil Feedstock to Biodiesel Products

  • Open Access

    ARTICLE

    Sono-Transesterification of Kapok Seed Oil with CaO:BaO-(x:y)/Active Natural Zeolite Catalyst

    Sumari Sumari*, Mega Murti, Aman Santoso, Muhammad Roy Asrori

    Journal of Renewable Materials, Vol.10, No.12, pp. 3659-3670, 2022, DOI:10.32604/jrm.2022.022995 - 14 July 2022

    Abstract Kapok seed oil is an environmentally friendly biodiesel feedstock. The problem of the best catalyst for transesterification of Kapok seed oil still continues today. The research developed a base-heterogeneous catalyst with the effect of ultrasonic waves during transesterification. So, the study aims: (1) to determine the type of natural zeolite used, (2) to determine the characteristics of the synthesized CaO:BaO/ANZ catalyst, and (3) to determine the effectiveness of the CaO:BaO/ANZ catalyst in the biodiesel production process through sono-transesterification of kapok seed oil. The research stages consisted of: (1) activation of natural zeolite and its characterization,… More > Graphic Abstract

    Sono-Transesterification of Kapok Seed Oil with CaO:BaO-(x:y)/Active Natural Zeolite Catalyst

  • Open Access

    ARTICLE

    Synthesis of Lignin-Based Polyacid in an Acidic Ionic Liquid: A Green Method to Improve the Performance of Lignin as Catalyst in Urea-Formaldehyde Resin

    Hamed Younesi-Kordkheili1,*, Antonio Pizzi2

    Journal of Renewable Materials, Vol.10, No.2, pp. 237-246, 2022, DOI:10.32604/jrm.2022.017851 - 30 August 2021

    Abstract The aim of this research was to investigate the effect of ionic liquid treated lignin-based polyacid as a catalyst for urea-formaldehyde (UF) resins. Esterification of lignin was carried out, without any catalyst, with anhydride maleic and 1-butyl-3-methylimidazolium hydrogen sulfate [Bmim][HSO4] as acidic ionic liquid to form maleated lignin-based polyacids (MA-IL). The performance of MA-IL as UF resin catalyst was respectively compared to hyroxymethylated lignin-based polyacid (MA-HL) and to NH4Cl. The FTIR analysis indicated that the proportion of -COOH and C-O bonds increased due to the esterification of lignin with ionic liquid rather than its hyroxymethylation. Physicochemical… More >

  • Open Access

    REVIEW

    Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review

    Nuni Widiarti1, Yatim Lailun Ni’mah1, Hasliza Bahruji2, Didik Prasetyoko1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 915-939, 2019, DOI:10.32604/jrm.2019.07183

    Abstract Biodiesel is a fossil fuel that is in demand to be developed because it is bio-renewable, biodegradable and environmentally friendly. Biodiesel produced from the transesterification reaction of vege Tab. oil using a base catalyst. CaO is the most developed catalyst for the reaction of transesterification of oil into biodiesel because it is cheap, the process is easy and has a high level of alkalinity. CaO is a cheap catalyst because it is easily obtained from natural ingredients. The use of CaO catalysts in the reaction formation of biodiesel continues to develop through modification with various More >

  • Open Access

    ARTICLE

    Mixed-Ligand Ni(II), Co(II) and Fe(II) Complexes as Catalysts for Esterification of Biomass-Derived Levulinic Acid with Polyol and in Situ Reduction via Hydrogenation with NaBH4

    Md. Anwar Hossain1,2, Lee Hwei Voon1,*

    Journal of Renewable Materials, Vol.7, No.8, pp. 731-748, 2019, DOI:10.32604/jrm.2019.04703

    Abstract Synthesizing polyol-based ester from biomass feedstocks for the preparation of biolubricant overcomes the dependence on petroleum oil usage. Albeit biomass-derived bio-oil is an alternative for the production of polyol ester, upgrading is essential prior to use as biolubricant. Levulinic acid (LA), obtained from bio-oil was applied for the catalytic esterification with two polyols, e.g., trimethylolpropane (TMP) and pentaerythritol (PE), in the presence of mixed-ligand Ni(II), Co(II), and Fe(II) complexes as catalyst. New mixed-ligand coordination complexes with empirical formula; [Ni(Phe)(Bpy)Cl].H2O, [Co(Phe)(Bpy)Cl].H2O, and [Fe(Phe)(Tyr)Cl].H2O were synthesized by the reaction of ligands [L-phenylalanine (Phe), 4,4'-bipyridine (Bpy), and L-tyrosine More >

  • Open Access

    ARTICLE

    Turning Industrial Waste into a Valuable Bioproduct: Starch from Mango Kernel Derivative to Oil Industry Mango Starch Derivative in Oil Industry

    Nívia do Nascimento Marques1, Caroline Suzy do Nascimento Garcia1, Liszt Yeltsin Coutinho Madruga1, Marcos Antônio Villetti2, Men de SáMoreira de Souza Filho3, Edson Noriyuki Ito4, Rosangela de Carvalho Balaban1,*

    Journal of Renewable Materials, Vol.7, No.2, pp. 139-152, 2019, DOI:10.32604/jrm.2019.00040

    Abstract After industrial mango processing, tons of residues such as peels and kernels are discarded as waste. Nevertheless, almost 60% of the mango kernel is due to starch on a dry weight basis. Herein, starch from mango (Manguifera Indica L.) kernel was applied to obtain a starch fatty ester with vinyl laurate, in DMSO, under basic catalysis. FTIR, 1H and 13C NMR confirmed that a starch ester with a degree of modification of 2.6 was produced. TGA showed that the modified starch has higher thermal stability than its precursors and higher than a vinyl laurate/starch physical More >

  • Open Access

    ARTICLE

    Microwave Synthesis of Inulin Acetate as Potential Bio-Based Additive for Poly(Vinyl Chloride)

    D. Vassilev1,*, N. Petkova2, M. Koleva1, P. Denev2

    Journal of Renewable Materials, Vol.6, No.7, pp. 707-714, 2018, DOI:10.32604/JRM.2018.00015

    Abstract The paper presents the findings of an experimental study on the microwave synthesis (MW) of inulin acetate and its possible application as bio-additive in poly(vinyl chloride) (PVC). The obtained inulin acetate has been identified and characterized by spectroscopic methods. Advantages of the MW compared with the conventional synthesis were defined. In order to evaluate possible application of the product as bio-based additive for polymers, effect of the inulin ester on PVC behavior and characteristics has been investigated by differential scanning calorimetry (DSC) and deformation upon extension. Experimental results show that in concentration range up to More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Alkyd Resins Based on Citrullus colocynthis Seed Oil

    Hassen Mohamed Sbihi1,*, Hamid Shaikh2, Lahssen El Blidi2, Imed Arbi Nehdi1, Ubair Abdus Samad2, Moufida Romdhani-Younes3, Saud Ibrahim Al-Resayes1

    Journal of Renewable Materials, Vol.6, No.6, pp. 651-661, 2018, DOI:10.7569/JRM.2018.634105

    Abstract In this study, different samples of alkyd resins based on Citrullus colocynthis seed oil (CCSO)—which has a high content of linoleic acid—were prepared as a renewable raw material. Short (I), medium (II), and long (III) alkyd resins were synthesized using oil, glycerol, and phthalic anhydride (PA) in different proportions. Prunus mahaleb seed oil (PMSO), which contains conjugated linolenic acid, was blended with CCSO in different proportions to examine the effect of PMSO on the film properties of alkyd resins (IV and V). All synthesized resins were characterized by FTIR and 1H NMR spectroscopic analysis. These More >

  • Open Access

    ARTICLE

    Chemical Modification of Cassava Starch by Transesterification Using Vegetable Oil/Aluminum Chloride

    A.G. Gouater Issola1, A. Ngueteu Kamlo2, A.M. Cheumani Yona1,*, M. Kor Ndikontar1

    Journal of Renewable Materials, Vol.6, No.6, pp. 642-650, 2018, DOI:10.7569/JRM.2018.634108

    Abstract Chemical modification of cassava starch by transesterification of a vegetable oil (palm kernel oil) using aluminum chloride as a Lewis acid catalyst was achieved under relatively mild conditions (temperature 60–110 °C; atmospheric pressure). The reaction was carried out without any additional solvent. The modified starch was characterized by degree of substitution (DS), FTIR, X-ray diffraction and thermal analysis. DS of 0.09 to 0.53 were obtained. The cassava starch presented an X-ray diffraction pattern of a type A starch. X-ray analyses showed that the reaction did not significantly affect the crystallinity of starch. The modified starch More >

Displaying 1-10 on page 1 of 11. Per Page