Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Water Quality Index Using Modified Random Forest Technique: Assessing Novel Input Features

    Wen Yee Wong1, Ayman Khallel Ibrahim Al-Ani1, Khairunnisa Hasikin1,*, Anis Salwa Mohd Khairuddin2, Sarah Abdul Razak3, Hanee Farzana Hizaddin4, Mohd Istajib Mokhtar5, Muhammad Mokhzaini Azizan6

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 1011-1038, 2022, DOI:10.32604/cmes.2022.019244 - 27 June 2022

    Abstract Water quality analysis is essential to understand the ecological status of aquatic life. Conventional water quality index (WQI) assessment methods are limited to features such as water acidic or basicity (pH), dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS). These features are often insufficient to represent the water quality of a heavy metal–polluted river. Therefore, this paper aims to explore and analyze novel input features in order to formulate an improved WQI. In this work, prospective insights on the feasibility of alternative water quality input variables… More >

Displaying 1-10 on page 1 of 1. Per Page